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This talk in one slide

Causal discovery algorithms learn causal structure (represented by a graph) from
observed data. For this, we can leverage constraints (i.e., observable properties
that distinguish different causal structures), and conditional independence1 is one
such type of constraint.

We start from the classical case (observations from a random vector), and then
continue with the time series case.

1For (discrete) random variables XA, XB , and XC , we say that XA and XB are conditionally
independent given XC if P(XA = a,XB = b|XC = c) = P(XA = a|XC = c)P(XB = b|XC = c)
whenever P(XC = c) > 0.
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Before we get started. . .

We’re hiring PhD students in AI and statistics.
https://www.cbs.dk/cbs/jobs-paa-cbs/ledige-stillinger/

phd-scholarships-in-ai-and-statistics-2025

This year (and next), we’re hiring assistant/associate professors in
statistics/machine learning (first call is coming later this year).

Feel free to reach out if you’re interested in learning more (swm.fi@cbs.dk).

There is a new Copenhagen-based network for researchers in causal discovery
(theory and applications). Feel free to reach out if you’re interested in joining
(next meetings on April 1 and May 27).
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... then we can get started: Conditional independence

Conditional independence of random variables is used widely in quantitative fields
of research. We can even use it to distinguish data-generating structures (see,
e.g., Spirtes and Zhang [2018]).

An example from everyday life (Coffee, Headache, Monday?),

C H

M

M is exogenous

C is exogenous

H = fH(M,C , εH)

C and M are (marginally) independent.
extra line

C H

M

M is exogenous

C = fC (M, εC )

H = fH(C , εH)

H and M are conditionally independent
given C .
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Structural causal model

The Coffee-Headache-Monday example is a structural causal model:

Let X = (X1, . . . ,Xn)
t be a random vector such that

X1 = f1(Xpa(1), ε1)

X2 = f2(Xpa(2), ε2)

...

Xi = fi (Xpa(i), εi )

...

Xn = fn(Xpa(n), εn)

where the εi are independent random variables, and Xpa(i) is a subset of variables.
We make an associated graph with nodes 1, 2, . . . , n such that i → j if i ∈ pa(j),
and we assume this graph to be acyclic (no directed cycle i → . . .→ . . .→ i) in
which case it is a directed acyclic graph (DAG).
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The Coffee-Headache-Monday example is a structural causal model:

Let X = (X1, . . . ,Xn)
t be a random vector such that

X1 = f1(Xpa(1), ε1)

X2 = f2(Xpa(2), ε2)

...

Xi = a ((((((((
Xi = fi (Xpa(i), εi )

...

Xn = fn(Xpa(n), εn)

We assume that its stable under interventions, i.e., an intervention, do(Xi = a),
changes a single equation and leaves the other equations unchanged [Pearl,
2009].
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The global Markov property

d-separation is a graphical concept via which the graph of a structural causal
model implies a set of conditional independence constraints.

For disjoint node sets A,B,C ⊆ {1, 2, . . . , n} and a graph D on nodes
{1, 2, . . . , n}, there are straightforward algorithms to decide d-separation, i.e., if A
and B are d-separated given C .

Theorem (Pearl [2009])

Let D be the graph associated with a structural causal model, and let A, B, and
C be disjoint subsets of its node set.

If A and B are d-separated given C , then XA and XB are conditionally
independent given XC .
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Revisiting the example

We see that the DAGs represent the dependence structure of the structural
equations.

C H

M

M = fM(εM)

C = fC (εC )

H = fH(M,C , εH)

In this graph, C and M are d-separated
by the empty set, implying that C and
M are (marginally) independent.
extra line

C H

M

M = fM(εM)

C = fC (M, εC )

H = fH(C , εH)

In this graph, H and M are d-separated
given C , implying that H and M are
conditionally independent given C .
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Causal discovery

Causal discovery aims to learn the underlying graph from observed data. One
approach is to conduct statistical tests of conditional independence and map the
associated p-values to a graph.

Many classical algorithms are adaptive in the sense that testing is done
sequentially and a single test result may rule out certain graphs, see, e.g., Spirtes
and Zhang [2018].

Another class of algorithms frame this learning problem as an optimization
[Eberhardt et al., 2024]

min
D is a DAG

g(D,P)

where g is a function measuring the discrepancy between the encoded
independences and the observed p-values, P (i.e., P is a set of p-values from
testing ‘is Xi and Xj conditionally independent given XC?’).
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Markov equivalence

This naturally leads to the question of Markov equivalence. We say that DAGs D1

and D2 (on a common node set) are Markov equivalent if for all disjoint node sets
A, B, and C it holds that A and B are d-separated given C in D1 if and only if A
and B are d-separated given C in D2.

So for causal discovery to output a complete solution, we need to characterize the
Markov equivalence classes of graphs.

A classical result [Pearl, 2009] shows that D1 and D2 are Markov equivalent if and
only if they have the same skeleton (undirected graph after transforming → to —)
and the same unshielded colliders (triples i → k ← j such that there is no edge
between i and j). The 1st graph is not Markov equivalent with the 2nd (different
skeleton and unshielded colliders), while the 2nd and 3rd are equivalent.

C H

M

C H

M

C H

M
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Weak Markov equivalence

We stated the causal discovery problem as an optimization,

min
D is a DAG

g(D,P)

The set P contains p-values from testing ‘is Xi and Xj conditionally independent
given XC?’. In graphs of moderate size, there is a very large number of such tests
as C can be any subset of V \ {i , j}.

Moreover, statistical tests with large conditioning sets are expected to have low
statistical power. This leads to the idea of weak Markov equivalence.

We say that DAGs D1 and D2 (on a common node set) are k-weakly Markov
equivalent if for all disjoint node sets A, B, and C such that |C | ≤ k it holds that
A and B are d-separated given C in D1 if and only if A and B are d-separated
given C in D2.
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Weak Markov equivalence

If [D] is the set of DAGs that are Markov equivalent with D, and [D]k is the set of
DAGs that are k-weakly Markov equivalent with D, then it follows directly that
[D] ⊆ [D]k . This means that a weak equivalence class is less informative, however,
the associated learning problem is more feasible.

One can characterize weak equivalence of DAGs similarly to Markov equivalence
which facilitates causal discovery of weak equivalence classes [Kocaoglu, 2024,
Mogensen, 2025b].
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From random vectors to stochastic processes

We will now make the following substitutions,

random vector 7→ (multivariate) stochastic process,

nodes represent random variables 7→ nodes represent coordinate processes,

conditional independence 7→ (conditional) Granger (non)causality.
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From random vectors to stochastic processes

We observe data from a multivariate time series in discrete time,
X = (Xα

t )t∈Z,α∈V , where V is the index set of the coordinate processes of
X .

Example data where V = {α, β, γ, δ, ε, ζ} ≃ {1, 2, 3, 4, 5, 6}, n = 6.

time

α
β
γ
δ
ε
ζ

Most results in this talk also hold for continuous-time processes, e.g., diffusions
and point processes. For simplicity, we will stick to the (discrete-time) time
series.
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Structural causal model

We now assume a dynamical structural causal model,

X i
t = Fi (X̄t−1,Nt)

where Nt are i.i.d. random vectors with independent entries and
X̄t−1 = {. . . ,Xt−3,Xt−2,Xt−1}.

From this representation, we define a directed graph D = (V ,E ) such that for
each i , j ∈ V , the edge i → j is in E if and only if Fj depends on X̄i,t−1. We say
that D is the causal graph of the stochastic process Xt .

We now need a testable constraint in this model class.
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Granger (non)causality

If D ⊆ V , let XD
t = {X d

t : d ∈ D} and XD
<t = {X d

s : d ∈ D, s < t}. If D = {d},
then XD

t = X d
t and XD

<t = {. . . ,X d
t−3,X

d
t−2,X

d
t−1}.

Definition (Granger (non)causality, Granger [1969], Eichler and Didelez [2010])

We say that A is Granger noncausal for B given C , and write A ̸→ B | C , if for all
t ∈ Z,

XA
<t ⊥ XB

t | XC
<t .

Granger causality is analogous to local
independence [Schweder, 1970, Aalen,
1987] in continuous-time processes.

Note that Granger (non)causality is not
symmetric, i.e., A ̸→ B | C does not
imply B ̸→ A | C .

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

B

C

A

0 1 t−1 t

0

0

0

time
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The global Markov property

δ-/µ-separation is a graphical separation criterion, analogous to d-separation in
DAGs (and m-separation in marginalizations of DAGs) [Didelez, 2008, Mogensen
and Hansen, 2020].

If B is µ-separated from A given C in the graph D, then we write A ⊥µ B | C [D].
µ-separation is not symmetric. We let I(D) = {(A,B,C ) : A ⊥µ B | C [D]}
denote the set of µ-separations implied by a graph, D.

Theorem (Eichler [2007], Eichler and Didelez [2010] and Mogensen and Hansen
[2020] (supplementary material))

Let X be a multivariate time series and let D be its Granger-causal graph. Let
A,B,C ⊆ V . Under regularity conditions,

A ⊥µ B | C [D]⇒ A ̸→ B | C ,

equivalently I(D) ⊆ I = {(A,B,C ) : (A ̸→ B | C ) in PX}.
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Marginalization

Often it is only reasonable to assume that we observe a subset of the processes in
the stochastic system, O ⊆ V .

α β

γ δ

η

ζ
time

α
β
γ
δ
ε
ζ

No assumptions are made about the number of unobserved processes or their
connections.
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Graphical marginalization

We would like a graph on nodes O ⊆ V that expresses the separations in
D = (V ,E ), i.e., a graph G = (O,F ) such that for all A,B,C ⊆ O

A ⊥µ B | C [D]⇔ A ⊥µ B | C [G],

and a procedure to construct G from D. We can use

the class of directed mixed graphs (DMGs), and

latent projection [Verma and Pearl, 1991, Richardson et al., 2023, Mogensen
and Hansen, 2020].

In a DMG two nodes α and β can be joined by any subset of edges
{α→ β, β → α, α↔ β}.
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Graphical marginalization

Let O = {α, β, γ, δ} below. The marginal (over O) independence models are equal
for the two DMGs.

α β

γ δ

η

ζ

α β

γ δ
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Markov equivalence

Let G1 = (V ,E1) and G2 = (V ,E2) be DMGs. We say that G1 and G2 are Markov
equivalent if for all A,B,C ⊆ V ,

A ⊥µ B | C [G1]⇔ A ⊥µ B | C [G2].

We use [G1] to denote the Markov equivalence class of G1. What can we say about
the Markov equivalence classes?
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Complexity of µ-separation DMGs

Theorem (Mogensen [2025a])

Deciding Markov equivalence of DMGs is coNP-complete.

The theorem also holds under certain sparsity constraints on the graphs.

This also implies that no polynomial-time algorithm which takes an independence
model as input and which is correct in the oracle case can output the greatest
element of the corresponding Markov equivalence class.
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Weak equivalence

Let V = {1, 2, . . . , n}.

Definition (Weak equivalence, Mogensen [2025a])

Let k = 0, 1, 2, . . . , n. We say that DMGs G1 = (V ,E1) and G2 = (V ,E2) are
k-weakly equivalent if for all α, β ∈ V and C ⊆ V such that |C | ≤ k

(α, β,C ) ∈ I(G1)⇔ (α, β,C ) ∈ I(G2).

One can also define more general weak equivalences of DMGs [Mogensen, 2025a].
n-weak equivalence is the same as Markov equivalence.

Let k1 ≤ k2. If G1 and G2 are k2-weakly equivalent, then they are also k1-weakly
equivalent.
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Weak equivalence, greatest element

Let [G]k denote the k-weak equivalence class of G. Weak equivalence classes
contain a greatest element, just like Markov equivalence classes. This means that
we can again use a DMEG as a representation of a weak equivalence class.

Theorem (Mogensen [2025a])

The set [G]k contains a greatest element.

The theorem also holds under more general weak equivalences [Mogensen,
2025a].

For a fixed V , we can think of k as a parameter controlling the granularity of the
graphical modeling (smaller k gives larger equivalence classes). We can visualize
this hierarchy by listing all pairs (G, k) such that G is the greatest element of [G]k
and connect the pairs (G, k) and (G−, k − 1) if G ∈ [G−]k−1. This gives us a
forest.
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An equivalence class and its DMEG

α β
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α β
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α β
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A part of the hierarchy on four nodes

0

1

2

3

1 2

3 4

(a, a) 1 2

3 4

(e, a)

1 2

3 4

(a, b) 1 2

3 4

(b, b) 1 2

3 4

(c , b) 1 2

3 4

(e, b)

1 2

3 4

(a, c) 1 2

3 4

(b, c) 1 2

3 4

(c , c) 1 2

3 4

(d , c) 1 2

3 4

(e, c)

1 2

3 4

(a, d) 1 2

3 4

(b, d) 1 2

3 4

(c , d) 1 2

3 4

(d , d) 1 2

3 4

(e, d)



Weak equivalence, another example

A, D A0 A1 A2 A3

A4 A5 E A6

H A7 A8 A9

B, G A0 A1 A2 A3

A4 A5 A6

A7 A8 A9

C, N10 A0 A1 A2 A3

A4 A5 A6

A7 A8 A9

D, N3 A0 A1 A2 A3

A4 A5 A6

A7 A8 A9
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Summary

In DAG-based causal models, causal discovery often uses tests of conditional
independence.

Some DAGs encode the same set of conditional independences, leading to
Markov equivalence classes.

Statistical and computational considerations lead to the consideration of
weak equivalence.

In time series, Granger (non)causality tests can be used to learn Markov
equivalence classes of causal graphs.

This leads to computationally hard problems, so learning a weak equivalence
class is more feasible.
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Thank you for listening!
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