
S Ø R E N W E N G E L M O G E N S E N

E X E R C I S E S I N R





1
Exercises

The structure of the sections is the same as of the lectures. The first
section of exercises can be solved after the first lecture and so forth.
Some exercises have hints on the last pages of the document.

1 Vectors

Exercise 1.1. This is a fundamental exercise on the creation and use of
vectors in R.

(a) Create a vector v with entries 0,0,0,0,0, and 0

(b) Create a vector w with entries 0,0,0,1,1, and 1

(c) Create a vector x with entries 2, 4, 6, 8, and 10.

(d) Create a vector y with entries -1, 1, -1, 1, and -1.

(e) Create a vector z with entries 1, 2, 4, 8, 16, 32, 64.

For vectors x, y ∈ Rn we can calculate the inner product xty.

(f) Calculate the inner product of x and y. Remember that the result
should be a single real number.

(g) Evaluate x + z. This gives a result even though the vectors are
not of the same length. Explain what R does to obtain a result.

(h) Add the names a, b, . . . , g to z and extract the 4th entry using
the name.

(i) Discard the last entry of z to obtain a vector of length six.

◦

Exercise 1.2. Let’s have a closer look at how R interpretes vector oper-
ations when the vectors are not of equal length.



4 søren wengel mogensen

(a) Generate a vector x = (1, 2, 3)t and a vector y = (1, 2, 3, 4, 5)t.

(b) What is the result of x*y? How does R make sense of the opera-
tion?

The way R makes sense of operations with vectors of unequal length is
perhaps surprising but it’s neat when generating certain vectors.

(c) Generate the vector z1 = (0, 2, 0, 4, 0, 6)t.

(d) Generate the vector z2 = (5,−4, 3,−2, 1)t.

◦

Exercise 1.3. Let’s have a look at subsetting of vectors. Type in the
vector x = (4, 9, 1, 4, 5, 7, 10, 1, 4, 5)t.

(a) Extract the subvector of x consisting of the 1st, 3rd, 5th, etc.
elements.

(b) Extract the subvector of x consisting of all elements for which
the previous element is strictly larger than 4 (ignore the first
element of x).

(c) Extract the subvector of x consisting of all elements for which
the sum of the previous and the following elements is strictly
larger than 10 (ignore the first and last elements of x).

◦

Exercise 1.4. This exercise is on mixing different data types. This can
be a clever way of manipulating data.

(a) Try adding different data types, e.g. TRUE + 1 or TRUE + "a".
What happens in each case? Explain the logic behind.

The Boolean values are in R de-
noted TRUE and FALSE, or T and FHopefully, you found some sort of translation between the Boolean

values (TRUE/FALSE) and integers (or reals). We can exploit this rela-
tionship to make our code more readable. Run the following code.

set.seed(101)

x <- sample(c(TRUE, FALSE), size = 10, replace = TRUE)

(b) What does sum(x) return? How does this make sense?

(c) How does multiplication (*) apply to Boolean values and how
can this be explained?

(d) Argue that in R, + is not defined for character strings. What
would be a sensible definition?



exercises in r 5

◦

Exercise 1.5. Sometimes it’s useful to manipulate character strings in R.
This exercise introduces the basic functions for doing so.

(a) Construct a vector x with entries "a","b","c","d", and "e".

(b) Construct a vector y with entries "a1","b1","c1","d1", and "e1".

(c) Construct a vector of length 1 with the entry "a1b1c1d1e1".

After this quick warm-up, let’s look at some more complicated ex-
amples. Run the following code to generate the vector w.

set.seed(101)

w <- replicate(10, paste(sample(letters, 6, replace = TRUE),

collapse = ""))

(d) Use the substr function to extract every 3rd and 4th character
of each element of w and name the resulting vector r.

(e) Generate a vector v of length 10 in which the first element is the
last in w, the second element of v is the second to last in w etc.

(f) In the previous question you reversed a vector. Now generate a
vector z such that each element of z is the reverse of the corre-
sponding element in r. That is, if the first element in r is "sr"

then the first element in z should be "rs".

◦



6 søren wengel mogensen

2 Matrices and arrays

Exercise 2.1. In this exercise you will work with matrices.
Create two matrices in the following way.

M1 <- matrix(1:12, nrow = 3)

M2 <- matrix(1:12, nrow = 3, byrow = TRUE)

(a) What does the byrow argument do?

(b) Extract the top-left entry of M1, the middle row of M2, and the
last column of M2.

(c) Explain why the following command results in an error,

M1%*%M2

and why the next one doesn’t.

M1*M2

◦

Exercise 2.2. The following commands define a matrix, then assign a
different content to the second column, and finally attempt a multipli-
cation of the first and third columns of the matrix which results in an
error.

M <- matrix(1:9, nrow = 3, ncol = 3)

M[,2] <- letters[1:3]

t(M[,1])%*%M[,1]

(a) Run the commands and explain why an error occurs.

R works with different data types and this is related to the above ques-
tion.

(b) Try to do something similar with other data types. Determine a
hierarchy between them.1 1 By hierarchy, an ordering of data

types is meant such data of a spe-
cific type can always be converted

to another type higher in the hierar-
chy, but not necessarily to one lower.

(c) What are the options if an R user wishes to store information of
different data types in a single object?

◦

Exercise 2.3. In this exercise, you’ll work with subsetting of matrices
as well as some "nice-to-know" functions for use on matrices.



exercises in r 7

(a) Familiarize yourself with functions diag, col, row, upper.tri,
and lower.tri.

(b) Construct a 4× 4 matrix M1 which has 1’s in the diagonal, 0’s
above the diagonal, and 2’s below the diagonal.

(c) Construct another 4 × 4 matrix M2 in which each entry is the
product of the column index and the row index.

(d) Name the columns and rows of M2. Extract the central part of
M2, that is, the 2× 2 matrix corresponding the rows 2 and 3 and
columns 2 and 3 in M2 using both the column/row names and
the column/row indices.

(e) Extract the elements of M2 with elements strictly larger than 4.

◦

Exercise 2.4. This exercise is about arrays in R. Arrays are a generali-
zation of matrices to higher dimensions. Generate this three-dimensional
array.

myarray <- array(seq(24), dim = c(4,3,2))

In R terminology, we say that some dimensions vary faster than oth-
ers. In a matrix, the row dimension varies faster than the column
dimension because (by default) R fills a matrix with a vector by first
filling the first column, then the second etc.

(a) Print myarray to the screen. How is it displayed?

(b) What dimension varies the fastest, and which varies slowest?

For a matrix the function t gives you the transpose. For an array, the
analogous operation is carried out by the aperm function.

(c) Construct a new array using aperm that has the same entries as
myarray but has dimensions 3× 4× 2.

◦

Exercise 2.5. Table 1.1 is an example of a contingency table where each
cell is a count of the frequence of a certain combination of values of the
variables A, B, and C. Enter the data in an array and add appropriate
names.

C

A B Yes No

Yes Yes 11 99

No 14 2

No Yes 45 7

No 9 8

Table 1.1: Example of
a contingency table.

◦

Exercise 2.6. This exercise is about indexing of arrays.

(a) Take a look on the functions row and col. What do these func-
tions return when you input a matrix?



8 søren wengel mogensen

(b) Write your own function that generalizes both row and col, and
to arrays of any dimension.

◦



exercises in r 9

3 Loops and lists

Exercise 3.1. Create a list in the following way.

mylist <- list("a")

(a) What is the difference between the commands mylist[[1]] and
mylist[1]?

(b) Use a for-loop to iteratively build a list with elements a, b, c, . . . ,
z.

(c) Assign names to the elements of the list and extract an element
using the assigned name of that element.

◦

Exercise 3.2. Write some code that keeps generating variates from a
standard normal distribution until a number which is larger than 2 in
absolute value is obtained and print the number to the screen. ◦

Exercise 3.3. In this exercise we’ll use nested for-loops, that is, a loop
inside a loop (though one could also solve the exercise without the use
of loops).

Create a list of length 10 such that the x’th element of the list is a
vector containing the divisors of x. ◦

Exercise 3.4. This exercise is an illustration of the fact that R by default
drops dimensions of an matrix (or more generally of an array) if pos-
sible. If the programmer is not aware of this behaviour, it might lead
to some confusion. Run the following code which throws an error at
some point.

set.seed(10)

M <- matrix(seq(16), nrow = 4)

for (i in 1:10){

nr <- sample(1:ncol(M), 1)

tmp <- M[,1:nr]

print(i) # print the iteration number

print(tmp) # print the subsetted matrix

colSums(tmp) # attempt to find the column sums

}

Fix this broken code.
◦



10 søren wengel mogensen

4 Functions

Exercise 4.1. Write an R function that takes a single vector as its ar-
gument and calculates the difference between the largest and smallest
elements of the vector. ◦

Exercise 4.2. R has many built-in functions to generate random variates
from different distributions (such as runif, rnorm, etc.) with support
in R. Write a function that returns n random variates from a mixture
distribution of two normal random variables with means µ1 and µ2

and standard deviation σ1 and σ2 for some value of the mixture pa-
rameter p. Use e.g. hist to examine the output of your function for
various combinations of input values. ◦

Exercise 4.3. The family of apply functions is very useful. The basic
idea is that we have some functions that we wish to apply repeatedly
e.g. to each element of a vector or list. Answer the below questions
using functions apply, lapply, sapply, etc.

(a) Implement a function that can return the row sums of a matrix

(not using the rowSums function, obviously).

(b) Implement a function that takes a list of square matrices as input
and outputs a list of eigenvalues.

◦

Exercise 4.4. This exercise is on vectorization. Many functions and ope-
rations in R are vectorized in the sense that we can apply them to a
vector and then they operate on each entry (or possibly on pairs of
entries, in the case of multiple arguments).

(a) Determine if the operators & and && are vectorized.

Define the following function.

f <- function(n){

sample(letters, n)

}

A vectorized version of f should be able to take a vector consisting of
m integers as input and output a list of length m, each element being
a sample of letters of appropriate size.

(a) Argue that f is not vectorized and use the function Vectorize to
obtain a vectorized version.

◦



exercises in r 11

Exercise 4.5. In R, one can have a function call itself.2 Somewhat mind- 2 This is called recursion in computer
science.boggling at first, it can actually be useful.

Using recursion, write a factorial function, that is, a function that
returns n! for n being a natural number or zero. ◦



12 søren wengel mogensen

5 Control flow

Exercise 5.1. In this exercise, you’ll be working with if and else state-
ments.

The following command gives you the number of files in your cur-
rent working directory.

length(list.files())

Write a piece of code that prints the names of all the files in your
current working directory if there is less than 10, and otherwise prints
the number of files. ◦

Exercise 5.2. Write an R function that takes a single number as its argu-
ment and returns "a" if the number is strictly positive, and otherwise
"b". What does your function do if you input a character string instead
of a number? ◦

Exercise 5.3. There’s a subtle difference between

if (a) {0} else {1}

and

ifelse(a,0,1)

that has to do with vectorization (see Exercise 4.4). Figure out which
is vectorized and which is not. ◦

Exercise 5.4. In this exercise, we’ll combine several control-flow con-
structs. Generate a vector x = (x1, x2, . . . , x100)

t of independent stan-
dard normal random variates. Using a for-loop, determine the smallest
i (if any such i exists) such that ∑i

j=1 xj exceeds 10 in absolute value,
and then break the loop and return i (if any such i exists). ◦



exercises in r 13

6 Documentation and help files, data.frames

Exercise 6.1. When doing statistics in R, we often use a data.frame

to hold the data set. A common task is then to extract parts of the
data.frame or in other ways reference variables therein.

Clear your work space and generate the following small data set.

rm(list = ls()) # this deletes all objects in your work space!

mydata <- data.frame(from = c("A", "B", "A", "A"),

to = c("A", "A", "B", "B"),

amount = c(10, 12, NA, 13))

(a) Use the functions str and complete.cases to familiarize your-
self with data.

(b) Find the subset of data for which the variable to is equal to "B".

To extract a variable from the data frame, we can use the following
command.

mydata$from

## [1] "A" "B" "A" "A"

In this way, you give R both the name of the variable and where
to look for it, that is in mydata. We can avoid stating the latter if we
attach the data frame. Understanding exactly what this function does
is not that simple and requires some knowledge of the inner workings
of R. This exercise only aims at developing our understanding of the
consequences of calling this function.

(c) Check if there’s in object from in your work space. Attach mydata

using the attach function and check again.

(d) Now assign rep("A", 4) to from. Does this change mydata$from?

(e) Remove from from your work space. Attach mydata again. Now
assign rep("B", 4) to mydata$from. What do you get if you call
from now?

(f) What can be learned about the use of attach from this exercise?

◦

Exercise 6.2. Write an R function that takes a data frame as its single
argument. The function should count the number of observations that
are not complete (i.e. have NA entries), and return this number, the row
indices of the non-complete observations, and the subset of the data
which is complete. ◦



14 søren wengel mogensen

Exercise 6.3. Loosely speaking, a data.frame is a list in the shape
of a matrix. For instance, when doing subsetting of data.frame we
can often use the techniques we’ve learned for matrices and lists. We
generate the data.frame from Exercise 6.1 again.

rm(list = ls()) # this deletes all objects in your work space!

mydata <- data.frame(from = c("A", "B", "A", "A"),

to = c("A", "A", "B", "B"),

amount = c(10, 12, NA, 13))

(a) Extract the 1st and 2nd variables using both matrix and list

subsetting.

At other times, it’s important that we actually consider a data.frame

as a list as illustrated below.

(b) Apply the typeof function to each of the variables, using both
apply and sapply functions. Which one returns the correct re-
sult, and why does one of the ways not work properly?

◦

Exercise 6.4. Write a function that can take a contingency table (an
array with names) and output a data frame that holds the same infor-
mation. Then write an inverse function. Or find functions that can do
this. ◦



exercises in r 15

7 Simulation

Exercise 7.1. Take a look at the simulation in F7-8sim.R. Let’s general-
ize this simulation by introducing a new parameter, m, the number of
dice rolled. This parameter is hard-coded to be 5 in F7-8sim.R. Write
some code to be able to make the analogous simulation for other val-
ues of m (the dice should be rolled until all m show the same number
of eyes). ◦

The Monty Hall problem is quite
famous. Look online for both academic
and non-academic discussions of this
problem.

Exercise 7.2. In this exercise, we will consider the Monty Hall problem.
We will not be concerned with mathematical arguments but instead
approximate a certain probability using simulation.

Imagine a game show where the contestant is placed in front of
three doors. Behind one door is a car, behind each of the other doors a
goat. The contestant will rather win a car than a goat. The contestant
picks a door in two steps: first the contestant picks some door, A. The
game master knows where the car is placed and then opens a door
behind which a goat is standing, but not door A. Note that this is
always possible. Then the game master offers the contestant a choice:
to either change to the other closed door, or stay with the original pick.
The contestant wins whatever is behind the door he/she is standing at
after this choice.

We will consider two strategies. Using strategy α the contestant
always stays at the door he/she originally chose. Using strategy β, the
contestant always changes door, when one door has been opened.

Simulate the probability of winning a car using strategies α and β.
◦

Exercise 7.3. Let’s simulate how a contageous disease spreads through
an office building. Say, we have n0 employees, located in m0 rooms, at
time 0. At each time point, 1,2,. . . each employee moves randomly to
another room inside the building.3 At time 0, only a single employee 3 For simplicity, assume that the dis-

tribution of the next room does not
depend on the current room and is
identical for all employees.

has the disease. If a healthy employee is in the same room as any sick
employee there’s a probability p that the disease will be transmitted
to the healthy employee. We assume that no employee ever leaves
the building. Let N be the first time point where all employees are
infected. Simulate the distribution of N given input parameters n0,
m0, and p. ◦



16 søren wengel mogensen

8 Programming style

Exercise 8.1. Find your solution to Exercise 7.3. Restructure and com-
ment your code to make it easily readable. ◦



exercises in r 17

9 S3 Objects

Exercise 9.1. Find your solution from Exercise 7.3. Write a function
that returns an S3 object of class contagionSim which is the result of
a single simulation including information at all time points. Write a
plot.contagionSim function (a plot method for the new class). Con-
sider what would be a nice way of visualizing such a simulation. ◦



18 søren wengel mogensen

10 Environments

Exercise 10.1. Run and read the following code. Explain how this
illustrates that (loosely speaking) the parent environment of a function
is determined by where it was defined, not where it’s called. Figure
out what the new assignment operator in the last line does.

rm(list = ls())

f <- function(x){

x + y

}

y <- 1

f(2)

## [1] 3

sapply(seq(3), f)

## [1] 2 3 4

sapply(seq(3), function(x) {y <- 2; f(x)})

## [1] 2 3 4

sapply(seq(3), function(x) {y <<- 2; f(x)})

## [1] 3 4 5

◦

Exercise 10.2. Run and read the following code. Explain what’s hap-
pening. ◦

rm(list = ls()); myenv <- new.env(); is.environment(myenv)

## [1] TRUE

y <- 1; myenv$y <- 2

f <- function(x) x + y

f(1); environment(f)

## [1] 2

## <environment: R_GlobalEnv>

environment(f) <- myenv

environment(f); f(1)

## <environment: 0x000001791738ed00>

## [1] 3



exercises in r 19

11 knitr and Shiny

Take a look at e.g. http://kbroman.org/knitr_knutshell/ if you need
some help for getting started with knitr.

Exercise 11.1. Compile a .pdf from the knitrExample.Rnw document
using knitr and work with the questions in the document. You’ll need
to install the knitr package and change some options in RStudio. ◦

Exercise 11.2. Take some exercise that you’ve solved, write a solution
in a .Rnw document and compile a .pdf. ◦

Exercise 11.3. In RStudio, open a new .Rmd document and compile it
to a .html file. ◦

Exercise 11.4. Take some exercise that you’ve solved, write a solution
in a .Rmd document and compile a .html file. ◦

Exercise 11.5. Take a look at the Shiny app in the files ui.R and server.R
and run the app. This can be done by putting the two files in your
working directory and use runApp in the Shiny package. One can also
use app.R to have every in a single file, and again use runApp.

Try to understand how the app works. Extend the app by allowing
the generalization in Exercise 7.1. ◦

Exercise 11.6. Run the following code which adds a diamonds data set
to your work space.

library(ggplot2)

data("diamonds")

Visualize the data set using a Shiny app in which the user can change
various parameters. ◦



20 søren wengel mogensen

12 Puzzles

This exercise requires a little know-
ledge of chess rules. If need be, find

the rules of chess somewhere online.

Exercise 12.1. In how many ways can you place eight queens on a
chess board such that no queen can take any other queen in one move?
Note that the purpose of the exercise is to have R make the bulk of the
work, not for you to look for a pen-and-paper solution. Note that we
assume that the queens are interchangeable, i.e. we do not distinguish
between the queens. ◦



exercises in r 21

13 Hints

Hints to 1.1. Take a look at functions rep and seq. Recall that many
operations are vectorized in R and also that R repeats vectors if they’re
too short to make sense of. ◦

Hints to 1.3. Use logical subsetting. That is, find a vector such that
you can determine if each element of that vector fits the criterion. ◦

Hints to 1.5. Recall that R has the built-in vector letters which can
save you some typing. Look into functions paste and rev. ◦

Hints to 2.2. To determine a hierarchy, try experimenting by putting
data of two data types into e.g. a matrix (or just a vector). Data of
one of the types will be turned into the other type. This latter type
is higher in the hierarchy. If you don’t see any options for storing
multiple data types in a single R object, you’ll learn about some in
subsequent sections. ◦

Hints to 2.3. Note that upper.tri and lower.tri return matrices of
Boolean values which can be used e.g. for changing only some en-
tries of a matrix. The final submatrix can be obtained by M2[A] for an
appropriate matrix A of Boolean values. ◦

Hints to 3.1. The build-in vector letters is useful for this exercise. ◦

Hints to 3.2. This can be done using a while loop and the rnorm func-
tion. ◦

Hints to 3.3. Use a double-loop. Let the outer loop iterate over x in
1,2,. . . ,10, and let the inner loop iterate over the numbers 1,2,. . . ,x. Use
%% to find out if some number in 1,2,. . . ,x is a divisor of x. ◦

Hints to 3.4. Take a look at the drop argument of the "[" function (run
e.g. ?"[" in the console). ◦

Hints to 4.1. The functions max and min can be useful for solving this
exercise. ◦

Hints to 4.3. The function eigen can be used to find the eigen values
of a square matrix. ◦

Hints to 4.4. To argue that f is not vectorized look at what happens
when you input vectors of Boolean values with length strictly larger
than 1. ◦

Hints to 4.5. The main idea of the recursion is that n! = n · (n − 1)!
for n > 0. Note that you’ll probably also need the if () {} else {}

construct. ◦

Hints to 6.2. The function complete.cases is useful for this exercise.◦



22 søren wengel mogensen

Hints to 12.1. The eight queens can be placed on the board in 64 ·
63 · . . . · 57 different ways and that’s probably to many to have your
computer check. To reduce this number, note that if eight queens are
placed such that no one can take another one in a single move we could
replace these queens with rooks and in this case the rooks would not
be able to take each other in one move either. This means that we only
have to search among those arrangements where the eight rooks can’t
take each other. There are 8! such arrangements. ◦


	Exercises
	Vectors
	Matrices and arrays
	Loops and lists
	Functions
	Control flow
	Documentation and help files, data.frames
	Simulation
	Programming style
	S3 Objects
	Environments
	knitr and Shiny
	Puzzles
	Hints


