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Events are everywhere!

Event Datasets

web logs

customer transactions
financial events

insurance claims

brain activity neural spikes

social network messages

Applications

preventive maintenance
health outcome prediction
scientific discovery
knowledge discovery
information diffusion

recommendation systems



Motivating analyses

What event types directly influence the occurrence of event type X?
What order of events makes event type X more (or less) likely to occur?

DESCRIPTIVE What is a measure of the pairwise causal relationship b/w event types Y and X?

What event type will occur next?
PREDICTIVE When will the next event happen?
How many events of type X will happen in the next month?

PRESCRIPTIVE
Given history, what action maximizes expected rewards from future events?
What would have happened if event type Y had happened (or not) in the past?
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Scope

TEMPORAL
POINT
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What is covered

+ Foundations of graphical models of TPPs
+ Learning graphical models of TPPs
» TPPs on network data

What is not covered

« Causal models
« Continuous-time reinforcement learning

References



Agenda

Background on Temporal Point Processes
Graphs and Temporal Point Processes
Parametric Graphical Event Models

—— BREAK ——

Neural Temporal Point Processes

Temporal Point Processes on Network Data
—— DISCUSSION ——



Background on TPPs  Graphs and TPPs  Parametric Graphical Event Models  Neural TPPs References
®0000000 00000000 0000000000000 000000000000 0000000000




Background on TPPs
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Overview

In this part of the tutorial, we'll
@ introduce event data sets and temporal point processes,
@ introduce graphs and local independence.

This is a general and nonparametric approach to graphical
modeling of temporal point processes. Later parts will look at
parametric models.
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Event data

An event data set is a collection D = {(/, tx)}N_; where
o t, is the event time of the k™ event, ty, < ti, for ko < ki,
o Iy is the label of the k™ event, Iy € L ={1,..., M}.

We will write {(Lk, Tk)}«>1 for the corresponding random
variables.
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Examples

Illustration on a single time line of data set with three coordinate
processes/event types (M = 3),

D = {(A.2),(B,3),(C,4),(B,6),...}.

A B C B A B C
A—E—@ = A— @
0 2 3 4 6 12 13 20
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Examples

[llustration of event data set with five coordinate processes/event
types where vertical placement represents coordinate process/event
type (M =5),

@
® @

o—© o0
@

Time

Coordinate processes
a b W N
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Temporal point processes (TPPs)

Event data sets can be modelled using (temporal) point processes.
A (multivariate) point process, X; = (X},...,XM), is a stochastic
process and

Xi= > 6(t- T

k>1,L,=i

We identify each i € £ with a coordinate process, X;. One can
specify a distribution of the point process using the conditional
intensities, \i. These are themselves stochastic processes and for
each time point t

A= IAES P(an event of type i occurs in (t,t+ h] | H¢)

where H; is a o-algebra generated by the evolution of the process
until time t.



Background on TPPs
000000e0

Conditional intensities (Hawkes process)

As an example of how to specify the distribution of a point process
using the conditional intensities, we consider the (linear) Hawkes
process.

Ne=p+d [ D0 Ae-Ty)
iel \ k:Ty<t,
Li=i

where p; are nonnegative constants and /' are nonnegative
functions.
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Conditional intensities (Hawkes process)
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Graphs and TPPs
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Graphs

We will use a directed graph, G = (L, £), to represent sparsity in
how coordinate processes influence each other.

e L is the node set (same as the label set/index set of the
coordinate processes).

e & is a set of edges, that is, ordered pairs, (i,/), such that
i,jeL.

Time



Graphs and TPPs
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Graphs

A walk is an alternating sequence of adjacent nodes and edges.
A path is a walk such that no node is repeated.

]l <5
O/Q\ @1+ 2—3—3isawalk
27— 3—4 @ 1<+ 2 — 3isa path

As there may be multiple edges between a pair of nodes, a
sequence of nodes does not define unique walk in itself.
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Local independence

Definition

Let A, B, C C L. We say that B is locally independent of A given
C, and write A 4 B | Cif for all i € B, E(\} | o(X§Y€)) does
not depend on tracks in A.

Local independence has been studied by, e.g., Schweder (1970),
Aalen (1987), and Didelez (2008). One can also define local inde-
pendence in other classes of processes, see e.g. (Commenges and
Gégout-Petit, 2009; Mogensen, Malinsky, and Hansen, 2018). It is
similar to Granger causality in (discrete-time) time series.

Local independence is a ternary relation, analogous to conditional
independence of random variables. However, local independence is
asymmetric,

ALNB|C#HBANA|C
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Local independence

Definition

Let A, B, C C L. We say that B is locally independent of A given
C, and write A 4 B | Cif for all i € B, E(\} | o(X§Y€)) does
not depend on tracks in A.

Coordinate processes
A W N P

Time
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Local independence

Definition

Let A, B, C C L. We say that B is locally independent of A given
C, and write A 4 B | Cif for all i € B, E(\} | o(X§Y€)) does
not depend on tracks in A.
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Graphs and TPPs
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Local independence graphs

Given a stochastic process, we define its local independence graph
to be the directed graph (DG), G = (L, &), such that for i,j € L

iAgie il LA}
The implication from left to right is the pairwise Markov property
(i /g j denotes that there is no edge from i to j in G).

Intuitively, the edge i —¢ j is omitted if what happens at time t in
process j does not depend (directly) on the past of process i.
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)-separation

d-separation is a graphical separation criterion, analogous to
d-separation in DAGs. §-separation from A to B given C for
disjoint sets A, B, C C L occurs when a certain kind of walk is
absent in the graph. The most important difference from
d-separation is the fact that only walks with a head at j can be
connecting from /i to j given some set C. We will just give some
examples.
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)-separation

d-separation is a graphical separation criterion, analogous to
d-separation in DAGs. §-separation from A to B given C for
disjoint sets A, B, C C L occurs when a certain kind of walk is
absent in the graph.

5A HA
L] ]

el 2o 172D
s s

Left: a walk (in red) which is d-connecting from 5 to 4 given

C = {2}, and not J-connecting given C = {3}.

Right: A = {4} is d-separated from B = {5} by any C such that
{3,6} C C.



Graphs and TPPs
00000080

Markov properties

Under some regularity conditions, the global Markov property holds
(Didelez, 2008; Mogensen, Malinsky, and Hansen, 2018).

If B is d-separated from A given C in the graph D, then we write
A L5 B | C [D]. d0-separation is not symmetric.

Theorem (The global Markov property)

Let X be a TPP and let D be its local independence graph. Let
A, B,CC V. Then

AlsB|C[D]=A%,B|C.

This gives a connection between TPPs and their local
independence graphs.



Graphs and TPPs
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More general graphs and structure learning

e Directed mixed graphs (include bidirected edges <+ as well as
directed edges) and p-separation allow graphical
marginalization to model partially observed systems
(Mogensen and Hansen, 2020).

e Analogous to MAGs and ADMGs with m-separation in
DAG-based models.

@ One can learn (marginalized) local independence graphs based
on tests of local independence (Meek, 2014; Mogensen,
Malinsky, and Hansen, 2018; Christgau, Petersen, and
Hansen, 2022).

e Analogous to structure learning in DAG-models based on tests
of conditional independence.
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Parametric Graphical Event Models
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Overview

(Dynamic) Graphical Models

@ Discrete-time

@ Dynamic Bayes nets
@ Time series graphs

e Continuous-time
@ Continuous-time Bayes nets
@ Local independence
graphs/graphical event
models

Parametric (Multivariate)
TPPs

The literature makes various
assumptions about history
dependence. Examples:

@ Poisson networks (Rajaram,
Graepel, and Herbrich, 2005)

@ Piecewise-constant intensity
models (Gunawardana, Meek, and
Xu, 2011)

@ Multivariate Hawkes processes
(Zhou, Zha, and Song, 2013)

@ Proximal GEMs (Bhattacharjya,
Subramanian, and Gao, 2018).

@ Ordinal GEMs (Bhattacharjya,
Gao, and Subramanian, 2020).



Parametric Graphical Event Models
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PGEM: Preliminaries

o Event dataset D = {(/;, t;)},i=1,--- ,N; i € L, |L| =M,
where t; are assumed temporally ordered b/w 0 and T.

@ Inter-event times b/w events labels Z and X are denoted ton
for Z # X; t for Z = X includes period at the end.

A B C B A B C
—aA—@3—e & A— L
12 13 20

o M = 3 labels; N = 7 events
o {tac} = {2,8}; {tbc} = {1, 7} {ton} = {3,7,7}
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PGEM: Formulation

A proximal graphical event model includes:
@ A graph G with a node for each label X in L.
o A window for every edge: W = {wy : VX} = {wy : VZ € U}.
@ An intensity parameter for every node X and instantiation u
of its parents’ occurrences, A = {\'> : VX € L}.

x|u

Assumption: A label’s intensity

depends on whether its parents Wab o
have occurred at least once in

. . . w
their respective recent (|.e. o ac
proximal) histories. W o
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PGEM: Score-based Learning (1 of 3)

Given graph G and windows W:
o LL=3x >, (=D(u)Agy + N(x,u)log ()\X‘u)), where:
o N(x,u): # of times X occurs and condition u is true
o D(u): duration over the horizon where condition u is true

o BIC = LL—log(T) Y y 2Vl (Score decomposes!)
o Max. likelihood estimates: A, = ")

Given G, finding the optimal W
is a combinatorial problem!
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PGEM: Score-based Learning (2 of 3)

For a node X with single parent Z, the log likelihood maximizing
window w,y either belongs to or is a left limit of a window in the
candidate set W* = {f, U max{tu}}.

@ Intuition: the optimal is at (or limit to) points where the
counts N(x,u) change.

N(x)(1—log N(x))
log T
then no proper superset of U can be X's optimal parents.

Using BIC as score, if 2Y > for parents U of X

@ Could help with efficient parent set, similar to Bayes nets
(Campos and Ji, 2011).
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PGEM: Score-based Learning (3 of 3)

Learning Problem: Given event dataset D, learn PGEM {G, W, A}.

Outer loop performs Heuristics:

graph search

« Score-based Inner loop computes: Q FBS-IW (independent
forward backward + “Optimal” windows using : windows)
search for parents one of two heuristics O FBS-CW (conditional
U for every event * LL, score and MLE windows)

label X estimates for intensity rates
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PGEM: Constraint-based Learning

Recent work (Bhattacharjya et al., 2022) considers testing for
process independence, analogous to methods that test for
conditional independence in Bayes nets (Spirtes, Glymour, and
Scheines, 2000).

Algorithm 1 PC Algorithm for Parent Discovery in GEMs
Inputs: Event label X € L. event dataset D (over £), threshold parameter for tester a
Outputs: Parents U for X

This assumes we have

U=cC
for all Y in £ do access to a process
flag = False,n = 0,Z* = U\ Y independence tester!

while n < |Z*| and flag = False do
for all Z that are subsets of size n in Z* do p
Obtain score from a|process independence test] checking if Y 4 X|Z
if scor = f(a) (indicating process independence) then
flag = True, U = U \ Y, break from loop
n=n+1
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OGEM: Preliminaries

Definitions

@ A masking function ¢(-) takes a sequence of events and
returns a sub-sequence where a label is never repeated.
@ An order instantiation for labels Z is a permutation of any

subset, obtained at time t by applying ¢(-) to events from Z
occurring within the interval [max {t — w, 0}, t].

.

The figure below shows order instantiations at occurrences of C
with respect to labels {A, B} using window w = 5.

Interval: [0, 4)

Interval: [15, 20)
State (0): a, b

State (0): ¢

<

> - »

A B C B A B C
—A——e—i A—1it @
0 2 3 4 6 12 13 20
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Tabular OGEM

Definition
A tabular graphical event model with ¢(+) includes:
@ A graph G with a node for each label X in L.
@ A window for every node: W = {wy : VX € L}.
@ An intensity parameter for every node X and order

instantiation o of its parents’ occurrences, A = {)\;"'Xo (X}

Limitations:

WG

@ # of order instantiations are o
super-exponential in |U|.

@ Complex models are hard to learn. o w

@ Not all order instantiations will be w, -
observed in the data.
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OGEM: Tree Representation
Basic idea: Make some order instantiations share parameters!

Definition llustrative parameter tree for

. event label C, parents: {A,B,C}
An order representation r of length g

k < |U] for a set of labels Z is a
sequence of slots that are either
filled with a label in Z or restricted s 2,2,

by a subset of Z. r is feasible if
consistent with at least one o. ) [7 2]

[b, —b, =b]  [=b, 2, 7]
[a]

Consider k = 2 size orders for C”a] [-al
Z=1{AB,C}. Aciima]

@ Ex #1: r = [A,—A] encodes [A, B]
and [A, C] [b,a,c] [b,c a]

T Aciac | [ Aeibe
@ Ex #2: r =[?,7] encodes all 6

permutations of pairs in {A, B, C}.
v
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OGEM: Learning

Learning Problem: Given event dataset D and masking function
o(+), learn {G, A} for OGEM.

o OGEM-tree: Learn OGEM tree with W given.
o OGEM-tree-W: As above, but also learn windows W.

: procedure OPTSUBTREE(event label X, parents U, window
wx, masking function ¢(-), dataset D, subiree length k)

Initialize representation list R, tree 7. and model informa-
tion for representations Z as empty

Set root of subtree as 7 = [2, 7, -] (I times)

Add r to list R and tree i

Compute all model information (summary stats, lambdas,
LL and score) for the root; store in

Outer loop performs

graph search

« Score-based
forward backward

L

Inner loop learns the tree
representation, given parents

. H 6: while R not empty do
search for parents |6(:OPUOV9" all possible k from 7 Choose any representation 7 in R and determine all
0 feasible splits by filling a single slot
U fOr eVery eVent | | ) 8 for both children r¢ in each feasible split of » do
label X « Learn the optimal subtree for 9: ifrc € 7 then
- 10: Retrieve model information from 7
each k by splitting at each I else
node 12: Compute all modvcl mfun‘mlmn: store in 7
13: Consider feasible split with maximum total score
14: if feasible split and score improvement from this split
over parent > 0 then
15: Make parent r an internal node of tree 7y
16: Add both r¢ from this split to list R
17: else
18: Remove parent r from list R; make it a leaf node

return Optimal sub-tree 7. for this k; Model info. 7
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Empirical Investigation

Task: To compare models around fitting event datasets.

Datasets:
@ ICEWS [politics] Dataset N (#events) M (#labels) | MHP  PGEM _OGEM-tab | OGEM-tree  OGEM-tree-W
. . ICEWS
@ IPTV [TV viewership] Argenting 5 104 A0 13861369 1366 1393
@ Li Brazil 4249 114 2069 2000 2057 2050 <1993
LinkedIn Colombia 84T 79 53 5% 518 518 537
[employment] Mexico 1905 97 760 797 771 769 766
@ Mimic [healthcare] IPTV 332980 16 | 64168 77009 75114 72696 74491
LinkedIn 2932 10 (1593 1462 1478 -1418 -1406
@ Stack Overflow |
; Mimic 2419 75 | 567 500 474 429 454
[online engagement]
Stack Overflow 71254 22 | -52543 -48323  -49344 49192 48232

Table 1: Log likelihood on the test sets.

Methodology:
@ Metric: Log likelihood; (70/15/15)% split for train/dev/test sets
@ Baselines: multivariate Hawkes process, PGEM, tabular OGEM

Results: OGEM-tree models fit data reasonably compared to baselines.
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Deep Learning

Advances state-of-the-art performances in numerous tasks and
applications.

@ e.g., computer vision, NLP, robotics, healthcare, chemistry,
astrophysics ...

Advantages:
@ Universal function approximator

@ Scaling to billions of parameters, with modern computation
tools such as GPUs
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Parametric GEMs vs. Neural Point Processes

Parametric GEMs

Makes various assumptions about
historical dependence + irregular
time dynamics:

@ Hawkes
@ Proximal

@ Basis functions

Neural Point Processes

Less restrictive assumptions:

@ Base dynamic model:
RNN, Transformers
@ lrregular dynamics:

o Hawkes
e Sampling
o Integral
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Into to Neural Point Process

Key Ideas:

@ Dynamic: to use a RNN/LSTM cell to automatically learn the
historical state h, with Ak(t) = fi (W] h(t)).

T

N
£(0) =Y log ()~ [ Ae)et

t=0

@ Evolution: to let the hidden state continuous evolve
(exponentially) at some rate A4 toward a steady state value

Intensity-1 ~— Intensity-2
BaseRate-1 BaseRate-2 N — ) \\|—‘
_—— B _,'/-/

O LSTM-Unit ///f\ A A A %
L

D Type-1 . Type-2 I

Du et al. (2016) and Mei and Eisner (2016)
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Neural Point Process with (some) Graph

How could we extract a graphical representation of (causal)
relationships between different events?

o Difficulty: neural network + time-dependent function

Existing literature focus on two approaches:
@ Attention mechanism

@ A dedicated set of parameters (e.g., a binary gating matrix)
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Neural TPPs with (some) Graph

Approach 1:
Attention mechanism is used to compute graphical relationships.

Approach 2:

A dedicated set of parameters is used to model the graph in neural
TPPs.
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Attention: A Brief Review

Original Attention

Given a current state h; and
several past states h;

@ Alignment: compute
€ij = f(h,‘, hj)
@ Weight:

= — _&xPpej
ajj = softmax(e) = S ewe

© Context: ¢; = _; ajih;

Bahdanau, Cho, and Bengio (2014)

References
000000@000000000000000

General Attention

3 components: query q, key k,
and values v

O Alignment: compute
eqfkj - f(q7 kj)

@ Weight:
Qg k = Softmax( \/77‘)
© Attention:

Att(q/ k? V) - ZJ ()‘C/J(/Vj

Vaswani et al. (2017)
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Attention: A Brief Review

Original Attention

Given a current state h; and
several past states h;

O Alignment: compute

ejj = f(hi, hj)
@ Weight:

ajj = softmax(e) = %
’ j ij

© Context: ¢; = ), ajih;

Bahdanau, Cho, and Bengio (2014)

0000000000000
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General Attention

3 components: query g, key k,
and value v
@ Alignment: compute
€q.k; = f(qa kj)
Q@ Weight:
Qg = softmax(—7=)

VIKl

@ Attention:
Att(q, k,v) =3 aq kv

Vaswani et al. (2017)
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1/3: Recurrent Point Process Network

Three parts: RNN + Dynamic Decaying + Attention

Q. , = softmax(f(hf, u;)) = Gy = mean(ay; ;)

= Zaz,',zhie exp(—w(t —t;)), Az(t) = f(s:(t))

ERYEATEN

attention
9

z

| Cell = cell » Cell —> cell
b b 4o

[ Asynchronoous Events ]

FalWa'aY o
oo < =

Xiao et al. (2017) and Xiao et al. (2019)
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2/3: Multi-Channel Neural GEM

Beyond exponential functions:
@ Piece-wise constant function
@ Time lags with delayed excitation or inhibition

@ Varying time scales among events

Key ideas of MCN-GEM:

@ Nonparametric: utilize time intervals between event arrivals to
sample negative evidence

@ Spatio-temporal attention

Gao et al. (2020)
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2/3: Multi-Channel Neural GEM

RNN + sampling negative evidence (non-event occurrences)

N+1

Zlog)\k(t)— ZAt Z)\k

(hi—1,ci—1) (his i) (his1,civ1) (hi—1,ciz1 (hi,ci) hi, &) (hit1,cit1)
E t Tit1 z; .i',_,+T t Tit1

(tiv1,liv1) (tiv1,liv1)
(t—1t) (t—t)
()| He A()[He

Gao et al. (2020)
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2/3: Multi-Channel Neural GEM

. . IxK Z;TZ)lakk/
+ spatio-temporal attention av € R**" = Gy v = WJ\U
[h'f—zj [h’:‘,c—I: [5571 [hf i
T Ti—1, Ti t
(ti-1,li-1) i1 (tis i)
/\[hr.let,k- (t - ti+1)

[[] denotes a list indexed by k /. \
J=3ke {17 o M} Spatio-temporal [/\k(t)“{t]

attention

Gao et al. (2020)
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General Attention

Limitations of RNN

e Difficulty to capture the long-term and/or non-sequential
dependencies.

o In-efficiency in training and hard to parallel.

Multi-headed Attention
o Att(q, k,v) = softmax(\/>)

@ concatenation + combination of multiple different attentions

Transformer-based TPPs (Zhang et al., 2020a; Zuo et al., 2020; Gu, 2021)
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Multi-Headed Attention: A Review

Attention is all you need...

L
Scaled Dot-Product h
Attention
1 ] 1

Linear Linear Linear

Vaswani et al. (2017)
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3/3: Self-Attentive Hawkes Models

Attention is all you need (to extract graphs)...

@ Attentions + Dynamic Decaying

:l Intensity calculation

Nx(() N self-attention blocks

[ Neural network module
|:] Type and position embedding
() Vectoror variable

i-Head Attenti
1

t
1
‘ Embedding ‘ | Embedding | | Embedding ‘ | Embedding ‘ |
(v1.t1) (v2:t2) v (s tio) (virt:) : (urt)
i

History events before time ¢

Zhang et al. (2020a)
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3/3: Self-Attentive Hawkes Models

SAHP: similar with a single attention but now with multiple.

Nice Question—
Good Answer -
Guru- 0.40
Popular Question -
Famous Question -
ice Answer - |
Good Question- 0.32
Caucus— ||
Not?\lble Question—
ecromancer -
Promoter - l. 0.24
Yearling -
Enlightened -
nlightened -
GreatgAnswer- [ | -0.16
Populist - |
Great Question— |
Constituent - || -0.08
Announcer - :
Stellar Question - ||
At T
N R ERRERRRRRRE -0.00

Zhang et al. (2020a)
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Neural TPPs with Explicit Graph Modeling

Approach 1:
Attention mechanism is used to compute graphical relationships.

Approach 2:
A dedicated set of parameters is used to model the graph in neural
TPPs.
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1/2: Learning Neural Point Processes with Latent Graphs

Modify SAHP attention score with explicit graphs

Ot(h,', hj) = Q(kyk,) exp(h,-Thj)
where Gy jr ~ Ber(k, k)

1.0
eaSuin =k
rﬁular uest|on
eckesien =
Goog Question |

| | u 0.8
]
us
Notable Questcl;on |
lecromanc L]

-0.6

-04

| |
Great Question ] || HNEE BN
%onsten ent _| | L

|
"m
Stellaé?%est?on [ | | |
[
lﬁﬁlmst H Bl m | 0.0

0.2

Zhang, Lipani, and Yilmaz (2021)
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2/2: Causality from Attributions on Sequence of Events

Explicit Graph Model with Attribution

Definition

Attribution A;(fy, xi, x;) is defined as the event contribution of the
J-th event to the target prediction fi(x;) relative to the baseline

fk(i;)-

@ Base dynamic model: GRU

@ Irregular time: semi-parametric weighted Gaussian basis
functions

@ f: cumulative intensity function

Zhang et al. (2020b)
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2/2: Causality from Attributions on Sequence of Events

Din1 Ji'=1 (ki = K)A;(fe, xi- x;)
n —
ST I(kE = K)

Ak =

ads 0.8

daily life ..
drama
education 0.6
entertainment
finance
kids 0.4
laws
military
movie -0.2
music
news N |
others
records
science
sports - -0.2

-0.0

Zhang et al. (2020b)
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Summary

@ Model and representation

e Dynamics: RNNs and Transformers
o lIrregular Dynamics: parametric and non-parametric

@ Graph representation

e Attention, multi-headed attention, and graph representation
e Explicit graph learning



Open Problems

Graphical Models

Growing body of literature to
combine deep learning and
graphical models.

@ Memory: the cost of storing
the representation

@ Statistical efficiency: the
number of training data

@ Runtime: the cost of
inference

@ Runtime: the cost of sampling

Goodfellow, Bengio, and Courville (2016)

Neural TPPs
000000000000000000000e

Graphical Event Models

Equivalent and new problems in
neural GEM:

Representation learning of
unstructured events

Structure learning: real
validation datasets with
graphs

Inference: generative TPPs

Latent events
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