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Events are everywhere!

Event Datasets

web logs

customer transactions

financial events

insurance claims

brain activity neural spikes

social network messages

...

Applications

preventive maintenance

health outcome prediction

scientific discovery

knowledge discovery

information diffusion

recommendation systems

...
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Motivating analyses
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Scope
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Agenda

Background on Temporal Point Processes

Graphs and Temporal Point Processes

Parametric Graphical Event Models

—— BREAK ——

Neural Temporal Point Processes

Temporal Point Processes on Network Data

—— DISCUSSION ——
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Background on TPPs
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Overview

In this part of the tutorial, we’ll

introduce event data sets and temporal point processes,

introduce graphs and local independence.

This is a general and nonparametric approach to graphical
modeling of temporal point processes. Later parts will look at
parametric models.
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Event data

An event data set is a collection D = {(lk , tk)}Nk=1 where

tk is the event time of the kth event, tk0 ≤ tk1 for k0 ≤ k1,

lk is the label of the kth event, lk ∈ L = {1, . . . ,M}.
We will write {(Lk ,Tk)}k≥1 for the corresponding random
variables.
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Examples

Illustration on a single time line of data set with three coordinate
processes/event types (M = 3),

D = {(A, 2), (B, 3), (C , 4), (B, 6), . . .}.
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Examples

Illustration of event data set with five coordinate processes/event
types where vertical placement represents coordinate process/event
type (M = 5),
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Temporal point processes (TPPs)

Event data sets can be modelled using (temporal) point processes.
A (multivariate) point process, Xt = (X 1

t , . . . ,X
M
t ), is a stochastic

process and

X i
t =

∑
k≥1,Lk=i

δ(t − Tk).

We identify each i ∈ L with a coordinate process, Xi . One can
specify a distribution of the point process using the conditional
intensities, λi

t . These are themselves stochastic processes and for
each time point t

λi
t = lim

h↓0
P(an event of type i occurs in (t, t + h] | Ht)

where Ht is a σ-algebra generated by the evolution of the process
until time t.
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Conditional intensities (Hawkes process)

As an example of how to specify the distribution of a point process
using the conditional intensities, we consider the (linear) Hawkes
process.

λj
t = µj +

∑
i∈L

 ∑
k:Tk<t,

Lk=i

f ji (t − Tk)


where µi are nonnegative constants and f ji are nonnegative
functions.
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Conditional intensities (Hawkes process)
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Graphs and TPPs
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Graphs

We will use a directed graph, G = (L, E), to represent sparsity in
how coordinate processes influence each other.

L is the node set (same as the label set/index set of the
coordinate processes).

E is a set of edges, that is, ordered pairs, (i , j), such that
i , j ∈ L.
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Graphs

A walk is an alternating sequence of adjacent nodes and edges.
A path is a walk such that no node is repeated.

1

2 3 4

5
1 ← 2 → 3 → 3 is a walk

1 ← 2 → 3 is a path

As there may be multiple edges between a pair of nodes, a
sequence of nodes does not define unique walk in itself.
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Local independence

Definition

Let A,B,C ⊆ L. We say that B is locally independent of A given
C , and write A ̸→λ B | C if for all i ∈ B, E (λi

t | σ(XA∪C
0:t )) does

not depend on tracks in A.

Local independence has been studied by, e.g., Schweder (1970),
Aalen (1987), and Didelez (2008). One can also define local inde-
pendence in other classes of processes, see e.g. (Commenges and
Gégout-Petit, 2009; Mogensen, Malinsky, and Hansen, 2018). It is
similar to Granger causality in (discrete-time) time series.
Local independence is a ternary relation, analogous to conditional
independence of random variables. However, local independence is
asymmetric,

A ̸→λ B | C ̸⇒ B ̸→λ A | C
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Local independence

Definition

Let A,B,C ⊆ L. We say that B is locally independent of A given
C , and write A ̸→λ B | C if for all i ∈ B, E (λi

t | σ(XA∪C
0:t )) does

not depend on tracks in A.
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Local independence

Definition

Let A,B,C ⊆ L. We say that B is locally independent of A given
C , and write A ̸→λ B | C if for all i ∈ B, E (λi

t | σ(XA∪C
0:t )) does

not depend on tracks in A.
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Local independence graphs

Given a stochastic process, we define its local independence graph
to be the directed graph (DG), G = (L, E), such that for i , j ∈ L

i ̸→G j ⇔ i ̸→λ j | L \ {i}

The implication from left to right is the pairwise Markov property
(i ̸→G j denotes that there is no edge from i to j in G).

Intuitively, the edge i →G j is omitted if what happens at time t in
process j does not depend (directly) on the past of process i .
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δ-separation

δ-separation is a graphical separation criterion, analogous to
d-separation in DAGs. δ-separation from A to B given C for
disjoint sets A,B,C ⊆ L occurs when a certain kind of walk is
absent in the graph. The most important difference from
d-separation is the fact that only walks with a head at j can be
connecting from i to j given some set C . We will just give some
examples.

1 2

3 4B

5A

6

1 2

3 4B

5A

6

Left: a walk (in red) which is δ-connecting from 5 to 4 given
C = {2}, and not δ-connecting given C = {3}.
Right: A = {4} is δ-separated from B = {5} by any C such that
{3, 6} ⊆ C .
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Markov properties

Under some regularity conditions, the global Markov property holds
(Didelez, 2008; Mogensen, Malinsky, and Hansen, 2018).
If B is δ-separated from A given C in the graph D, then we write
A ⊥δ B | C [D]. δ-separation is not symmetric.

Theorem (The global Markov property)

Let X be a TPP and let D be its local independence graph. Let
A,B,C ⊆ V . Then

A ⊥δ B | C [D]⇒ A ̸→λ B | C .

This gives a connection between TPPs and their local
independence graphs.
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More general graphs and structure learning

Directed mixed graphs (include bidirected edges ↔ as well as
directed edges) and µ-separation allow graphical
marginalization to model partially observed systems
(Mogensen and Hansen, 2020).

Analogous to MAGs and ADMGs with m-separation in
DAG-based models.

One can learn (marginalized) local independence graphs based
on tests of local independence (Meek, 2014; Mogensen,
Malinsky, and Hansen, 2018; Christgau, Petersen, and
Hansen, 2022).

Analogous to structure learning in DAG-models based on tests
of conditional independence.
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Parametric Graphical Event Models
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Overview

(Dynamic) Graphical Models

Discrete-time
Dynamic Bayes nets
Time series graphs

Continuous-time
Continuous-time Bayes nets
Local independence
graphs/graphical event
models

Parametric (Multivariate)
TPPs

The literature makes various
assumptions about history
dependence. Examples:

Poisson networks (Rajaram,
Graepel, and Herbrich, 2005)

Piecewise-constant intensity
models (Gunawardana, Meek, and
Xu, 2011)

Multivariate Hawkes processes
(Zhou, Zha, and Song, 2013)

Proximal GEMs (Bhattacharjya,
Subramanian, and Gao, 2018).

Ordinal GEMs (Bhattacharjya,
Gao, and Subramanian, 2020).
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PGEM: Preliminaries

Event dataset D = {(li , ti )}, i = 1, · · · ,N; li ∈ L, |L| = M,
where ti are assumed temporally ordered b/w 0 and T .

Inter-event times b/w events labels Z and X are denoted t̂zx
for Z ̸= X ; t̂xx for Z = X includes period at the end.

Example

M = 3 labels; N = 7 events

{t̂ac} = {2, 8}; {t̂bc} = {1, 7}; {t̂bb} = {3, 7, 7}
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PGEM: Formulation

Definition

A proximal graphical event model includes:

A graph G with a node for each label X in L.
A window for every edge: W = {wx : ∀X} = {wzx : ∀Z ∈ U}.
An intensity parameter for every node X and instantiation u
of its parents’ occurrences, Λ = {λwx

x |u : ∀X ∈ L}.

Assumption: A label’s intensity
depends on whether its parents
have occurred at least once in
their respective recent (i.e.
proximal) histories.
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PGEM: Score-based Learning (1 of 3)

Given graph G and windows W:

LL =
∑

X

∑
u

(
−D(u)λx |u + N(x ,u) log (λx |u)

)
, where:

N(x ,u): # of times X occurs and condition u is true
D(u): duration over the horizon where condition u is true

BIC = LL− log (T )
∑

X 2|U| (Score decomposes!)

Max. likelihood estimates: λ̂x |u = N(x ,u)
D(u)

Given G, finding the optimal W
is a combinatorial problem!
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PGEM: Score-based Learning (2 of 3)

Theorem

For a node X with single parent Z , the log likelihood maximizing
window wzx either belongs to or is a left limit of a window in the
candidate set W∗ = {t̂zx ∪max{t̂xx}}.

Intuition: the optimal is at (or limit to) points where the
counts N(x ,u) change.

Theorem

Using BIC as score, if 2U > N(x)(1−logN(x))
logT for parents U of X

then no proper superset of U can be X ’s optimal parents.

Could help with efficient parent set, similar to Bayes nets
(Campos and Ji, 2011).
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PGEM: Score-based Learning (3 of 3)

Learning Problem: Given event dataset D, learn PGEM {G,W,Λ}.
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PGEM: Constraint-based Learning

Recent work (Bhattacharjya et al., 2022) considers testing for
process independence, analogous to methods that test for
conditional independence in Bayes nets (Spirtes, Glymour, and
Scheines, 2000).
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OGEM: Preliminaries

Definitions

A masking function ϕ(·) takes a sequence of events and
returns a sub-sequence where a label is never repeated.

An order instantiation for labels Z is a permutation of any
subset, obtained at time t by applying ϕ(·) to events from Z
occurring within the interval [max {t − w , 0}, t].

Example

The figure below shows order instantiations at occurrences of C
with respect to labels {A,B} using window w = 5.
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Tabular OGEM

Definition

A tabular graphical event model with ϕ(·) includes:
A graph G with a node for each label X in L.
A window for every node: W = {wx : ∀X ∈ L}.
An intensity parameter for every node X and order
instantiation o of its parents’ occurrences, Λ = {λwx

x |o : ∀X}.

Limitations:
# of order instantiations are
super-exponential in |U|.
Complex models are hard to learn.

Not all order instantiations will be
observed in the data.
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OGEM: Tree Representation

Basic idea: Make some order instantiations share parameters!

Definition

An order representation r of length
k < |U| for a set of labels Z is a
sequence of slots that are either
filled with a label in Z or restricted
by a subset of Z. r is feasible if
consistent with at least one o.

Example

Consider k = 2 size orders for
Z = {A,B,C}.

Ex #1: r = [A,¬A] encodes [A,B]
and [A,C ].

Ex #2: r = [?, ?] encodes all 6
permutations of pairs in {A,B,C}.
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OGEM: Learning

Learning Problem: Given event dataset D and masking function
ϕ(·), learn {G,Λ} for OGEM.

OGEM-tree: Learn OGEM tree with W given.

OGEM-tree-W: As above, but also learn windows W.
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Empirical Investigation

Task: To compare models around fitting event datasets.

Datasets:
ICEWS [politics]

IPTV [TV viewership]

LinkedIn
[employment]

Mimic [healthcare]

Stack Overflow
[online engagement]

Methodology:

Metric: Log likelihood; (70/15/15)% split for train/dev/test sets

Baselines: multivariate Hawkes process, PGEM, tabular OGEM

Results: OGEM-tree models fit data reasonably compared to baselines.
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Neural TPPs
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Deep Learning

Advances state-of-the-art performances in numerous tasks and
applications.

e.g., computer vision, NLP, robotics, healthcare, chemistry,
astrophysics ...

Advantages:

Universal function approximator

Scaling to billions of parameters, with modern computation
tools such as GPUs
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Parametric GEMs vs. Neural Point Processes

Parametric GEMs

Makes various assumptions about
historical dependence + irregular
time dynamics:

Hawkes

Proximal

Basis functions

Neural Point Processes

Less restrictive assumptions:

Base dynamic model:
RNN, Transformers

Irregular dynamics:

Hawkes
Sampling
Integral
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Into to Neural Point Process

Key Ideas:

Dynamic: to use a RNN/LSTM cell to automatically learn the
historical state h, with λk(t) = fk(W

T
k h(t)).

L(D) =
N∑
i

log λki (ti )−
∫ T

t=0
λ(t)dt

Evolution: to let the hidden state continuous evolve
(exponentially) at some rate λk toward a steady state value

Du et al. (2016) and Mei and Eisner (2016)
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Neural Point Process with (some) Graph

How could we extract a graphical representation of (causal)
relationships between different events?

Difficulty: neural network + time-dependent function

Existing literature focus on two approaches:

1 Attention mechanism

2 A dedicated set of parameters (e.g., a binary gating matrix)
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Neural TPPs with (some) Graph

Approach 1:
Attention mechanism is used to compute graphical relationships.

Approach 2:
A dedicated set of parameters is used to model the graph in neural
TPPs.
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Attention: A Brief Review

Original Attention

Given a current state hi and
several past states hj

1 Alignment: compute
eij = f (hi , hj)

2 Weight:
αi ,j = softmax(e) =

exp eij∑
j exp eij

3 Context: ci =
∑

j αijhj

Bahdanau, Cho, and Bengio (2014)

General Attention

3 components: query q, key k ,
and values v

1 Alignment: compute
eq,kj = f (q, kj)

2 Weight:
αq,kj = softmax( e√

|k|
)

3 Attention:
Att(q, k, v) =

∑
j αq,kj vj

Vaswani et al. (2017)
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1/3: Recurrent Point Process Network

Three parts: RNN + Dynamic Decaying + Attention

αzi ,z = softmax(f (hei , uz))⇒ Gk,k ′ = mean(αzi ,z)

sz(t) =
∑
i

αzi ,zh
e
i exp(−w(t − ti )), λz(t) = f (sz(t))

Xiao et al. (2017) and Xiao et al. (2019)
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2/3: Multi-Channel Neural GEM

Beyond exponential functions:

Piece-wise constant function

Time lags with delayed excitation or inhibition

Varying time scales among events

Key ideas of MCN-GEM:

Nonparametric: utilize time intervals between event arrivals to
sample negative evidence

Spatio-temporal attention

Gao et al. (2020)
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2/3: Multi-Channel Neural GEM

RNN + sampling negative evidence (non-event occurrences)

L(D) =
N∑
i

log λki (ti )−
N+1∑
i

∆ti
∑
k

λki (ti )

Gao et al. (2020)
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2/3: Multi-Channel Neural GEM

+ spatio-temporal attention α ∈ RJ×K ⇒ Gk,k ′ =

∑T
i

∑J
j α

k
ijk′

|T ||J|

Gao et al. (2020)
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General Attention

Limitations of RNN

Difficulty to capture the long-term and/or non-sequential
dependencies.

In-efficiency in training and hard to parallel.

Multi-headed Attention

Att(q, k , v) = softmax( qkT√
|k|
)v

concatenation + combination of multiple different attentions

Transformer-based TPPs (Zhang et al., 2020a; Zuo et al., 2020; Gu, 2021)
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Multi-Headed Attention: A Review

Attention is all you need...

Vaswani et al. (2017)
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3/3: Self-Attentive Hawkes Models

Attention is all you need (to extract graphs)...

Attentions + Dynamic Decaying

Zhang et al. (2020a)
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3/3: Self-Attentive Hawkes Models

SAHP: similar with a single attention but now with multiple.

Zhang et al. (2020a)
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Neural TPPs with Explicit Graph Modeling

Approach 1:
Attention mechanism is used to compute graphical relationships.

Approach 2:
A dedicated set of parameters is used to model the graph in neural
TPPs.
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1/2: Learning Neural Point Processes with Latent Graphs

Modify SAHP attention score with explicit graphs

α(hi , hj) = G(k,k ′) exp(h
T
i hj)

where Gk,k ′ ∼ Ber(k , k ′)

Zhang, Lipani, and Yilmaz (2021)
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2/2: Causality from Attributions on Sequence of Events

Explicit Graph Model with Attribution

Definition

Attribution Aj(fk , xi , x i ) is defined as the event contribution of the
j-th event to the target prediction fk(xi ) relative to the baseline
fk(x i ).

Base dynamic model: GRU

Irregular time: semi-parametric weighted Gaussian basis
functions

f : cumulative intensity function

Zhang et al. (2020b)
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2/2: Causality from Attributions on Sequence of Events

Ak,k ′ =

∑n
i=1

∑i
j=1 I (k

s
j = k ′)Aj(fk , xi , x i )∑n

j I (k
s
j = k ′)

Zhang et al. (2020b)
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Summary

Model and representation

Dynamics: RNNs and Transformers
Irregular Dynamics: parametric and non-parametric

Graph representation

Attention, multi-headed attention, and graph representation
Explicit graph learning
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Open Problems

Graphical Models

Growing body of literature to
combine deep learning and
graphical models.

Memory: the cost of storing
the representation

Statistical efficiency: the
number of training data

Runtime: the cost of
inference

Runtime: the cost of sampling

Goodfellow, Bengio, and Courville (2016)

Graphical Event Models

Equivalent and new problems in
neural GEM:

Representation learning of
unstructured events

Structure learning: real
validation datasets with
graphs

Inference: generative TPPs

Latent events
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