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Abstract

Many classical algorithms output graphical representations of causal structures by
testing conditional independence among a set of random variables. In dynamical
systems, local independence can be used analogously as a testable implication of
the underlying data-generating process. We suggest some inexpensive methods for
causal screening which provide output with a sound causal interpretation under the
assumption of ancestral faithfulness. The popular model class of linear Hawkes
processes is used to provide an example of a dynamical causal model. We argue
that for sparse causal graphs the output will often be close to complete. We give
examples of this framework and apply it to a challenging biological system.

1 Introduction

Constraint-based causal learning is computationally and statistically challenging. There is a large
literature on learning structures that are represented by directed acyclic graphs (DAGs) or marginaliza-
tions thereof (see e.g. [10] for references). The fast causal inference algorithm, FCI, [19] provides in a
certain sense maximally informative output [23], but at the cost of using a large number of conditional
independence tests [2]. To reduce the computational cost, other methods provide output which has
a sound causal interpretation, but may be less informative. Among these are the anytime FCI [18]
and RFCI [2]. A recent algorithm, ancestral causal inference (ACI) [11], aims at learning only the
directed part of the underlying graphical structure which allows for a sound causal interpretation even
though some information is lost.

In this paper, we describe some simple methods for learning causal structure in dynamical systems
represented by stochastic processes. Many authors have described frameworks and algorithms for
learning structure in systems of time series, ordinary differential equations, stochastic differential
equations, and point processes. However, most of these methods do not have a clear causal interpre-
tation when the observed processes are part of a larger system and most of the current literature is
either non-causal in nature, or requires that there are no unobserved processes.

Analogously to testing conditional independence when learning DAGs, one can use tests of local
independence in the case of dynamical systems [5, 12, 14]. In [12, 14] the authors propose algorithms
for learning local independence structures. We show empirically that we can recover features of the
causal structure using considerably fewer tests of local independence. This is done by first suggesting
a learning target which is easier to learn, though still conveys useful causal information, analogously
to ACI [11]. Second, the proposed algorithm is only guaranteed to provide a supergraph of the
learning target and this also reduces the number of local independence tests drastically. A central
point is that our proposed methods retain a sound causal interpretation under a faithfulness-type
assumption.

In [12], the author suggests learning a directed graph to represent a causal dynamical system and
gives a learning algorithm which we will describe as a simple screening algorithm. We show that
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this algorithm can be given a sound interpretation under a weaker faithfulness assumption than that
of [12]. We also provide a simple interpretation of the output of this algorithm and we show that
similar screening algorithms can give comparable results using considerably fewer tests of local
independence.

For illustration of the proposed algorithms, we will use linear Hawkes processes in this paper. This
model class is used in a wide range of application and is also a topic of methodological research (see
e.g. [9] and references therein). All proofs are provided in the supplementary material.

2 Hawkes processes

The algorithmic results we present apply in general to local independence models. To provide
a concrete causal model, we will consider the linear Hawkes processes. [9] gives an accessible
introduction to this model class. On a filtered probability space, (Ω,F , (Ft),P), we consider an
n-dimensional multivariate point process, X = (X1, . . . , Xn). Each coordinate process Xα is
described by a sequence of positive, stochastic event times Tα1 , T

α
2 , . . . such that Tαj > Tαi almost

surely for j > i. We let V = {1, . . . , n}. This can also be formulated in terms of a counting process,
N , such that Nα

s =
∑
i 1(Ti≤s), α ∈ V . There exists so-called intensity processes, λ = (λ1, . . . , λn)

such that

λαt = lim
h→0

1

h
P(Nα

t+h −Nα
t = 1 | Ft)

and the intensity at time t can therefore be thought of as describing the probability of a jump in the
immediate future after time t conditionally on the history until time t as captured by the Ft-filtration.
In a linear Hawkes model, the intensity of the α-process, α ∈ V , is of the simple parametric form

λαt = µα +
∑
γ∈V

∫ t

0

gαγ(t− s) dNγ
s

where µα ≥ 0 and the functions gαγ : R+ → R, α, γ ∈ V , are nonnegative. From the above formula,
we see that if gβα = 0, then the α-process does not enter directly into the intensity of the β-process,
α, β ∈ V and we will formalize this observation in subsequent sections.

2.1 A dynamical causal model

We will in this section define what is meant by a causal model and also define a graph (V,E) which
represents the causal structure of the model. The node set V is the index set of the coordinate
processes of the multivariate Hawkes process, thus identifying each node with a coordinate process. If
we first consider the case where X = (X1, . . . , Xn) is a multivariate random variable, it is common
to define a causal model in terms of a DAG, D, and a structural causal model [15, 16] by assuming
that there exists functions fi and error terms εi such that

Xi = fi(XpaD(Xi), εi)

for i = 1, . . . , n. The causal assumption amounts to assuming that the functional relations are stable
under interventions. This idea can be transferred to dynamical systems (see also [17, 14]). If we
consider the model described above, we can consider intervening on the α-process and e.g. enforce
events in the α-process at the deterministic times t1, . . . , tk, and these times only. In this case, the
causal assumption amounts to assuming that the distribution of the intervened system is governed by
the intensities

λβt = µβ +

∫ t

0

gβα(t− s) dN̄α
s +

∑
γ∈V \{α}

∫ t

0

gβγ(t− s) dNγ
s

for all β ∈ V \ {α} and where N̄α
t =

∑k
i=1 1(t≤ti). We will not go into a discussion of the existence

of these intervened stochastic processes. The above is a hard intervention in the sense that the
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Figure 1: Left: a causal graph on nodes V = {α, β, γ, δ, ε, φ}. Right: the corresponding parent graph on nodes
O = {α, δ, ε}. Note that causal graphs and parent graphs may contain cycles. The parent graph does not contain
information on the confounder process φ as it only encodes ’causal ancestors’.

α-process is fixed to be a deterministic function of time. Note that one could easily imagine other
types of interventions such as soft interventions where the intervened process is not deterministic. It
holds that Nβ

t+h −N
β
t ∼ Pois(λ

β
t · h) in the limit h→ 0, and we can think of this as a simulation

scheme in which we generate the points in one small interval in accordance with some distribution
depending on the history of the process. As such the intensity describes a structural causal model at
infinitesimal time steps.

We use the set of functions {gβα}α,β∈V to define the causal graph of the Hawkes process. A graph is
a pair (V,E) where V is a set of nodes and E is a set of edges between these nodes. We assume that
we observe the Hawkes process in the time interval J = [0, T ], T ∈ R. The causal graph has node set
V (the index set of the coordinate processes) and the edge α→ β is in the causal graph if and only if
gβα is not identically zero on J . We call this graph causal as it is defined using {gβα}α,β∈V which
is a set of mechanisms assumed stable under interventions, and this causal assumption is therefore
analogous to that of a classical structural causal model as briefly introduced above.

2.2 Parent graphs

In principle, we would like to recover the causal graph, D, using local independence tests. Often,
we will only have partial observation of the dynamical system in the sense that we only observe the
processes in O ( V . We will then aim to learn the parent graph of D.

Definition 1 (Parent graph). Let D = (V,E) be a causal graph and let O ⊆ V . The parent graph of
D on nodes O is the graph (O,F ) such that for α, β ∈ O, the edge α→ β is in F if and only if the
edge α→ β is in the causal graph or there is a path α→ δ1 → . . .→ δk → β in the causal graph
such that δ1, . . . , δk /∈ O, for some k > 0 .

The parent graph thus encodes whether or not an observed process is a ’causal ancestor’ of another.
We denote the parent graph of the causal graph by PO(G), or just P(G) if the set O used is clear
from the context. In applications, a parent graph may provide answers to important questions as it
tells us the causal relationships between the observed nodes. A similar idea was applied in [11]. In
large systems, it can easily be infeasible to learn the complete independence structure of the observed
system, and we propose instead to estimate the parent graph which can be done efficiently. In the
supplementary material, we give another characterization of a parent graph. Figure 1 contains an
example of a causal graph and a corresponding parent graph.

2.3 Local independence

Local independence has been studied by several authors and in different classes of continuous-time
models as well as in time series [1, 3, 4, 6]. We give an abstract definition of local independence,
following the exposition in [14].

Definition 2 (Local independence). Let X be a multivariate stochastic process and let V be an index
set of its coordinate processes. Let FDt denote the complete and right-continuous version of the
σ-algebra σ({Xα

s : s ≤ t, α ∈ D}). Let λ be a multivariate stochastic process (assumed to be
integrable and càdlàg) such that its coordinate processes are indexed by V . For A,B,C ⊆ V , we say
that XB is λ-locally independent of XA given XC (or simply B is λ-locally independent of A given
C) if the process
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t 7→ E(λβt | FC∪At )

has an FCt -adapted version for all β ∈ B. We write this as A 6→λ B | C, or simply A 6→ B | C.

In the case of Hawkes processes, the intensities will be used as the λ-processes in the above definition.
See [13, 14] for technical details on the definition of local independence.

2.3.1 Local independence and the causal graph

To make progress on the learning task, we will in this subsection describe the link between the local
independence model and the causal graph.
Definition 3 (Pairwise Markov property). We say that a local independence model satisfies the
pairwise Markov property with respect to a DG, D = (V,E), if the absence of the edge α→ β in D
implies α 6→λ β | V \ α for all α, β ∈ V .

We will make the following technical assumption throughout the paper. In applications, the functions
gαβ are often assumed to be of the below type (see e.g. [9] for common choices of gβα-functions).
Assumption 4. Assume that N is a multivariate Hawkes process and that we observed N over the
interval J = [0, T ] where T > 0. For all α, β ∈ V , the function gβα : R+ → R is continuous on J .

A version of the following result is also stated in [7] but no proof is given. If G1 = (V,E1) and
G2 = (V,E2) are graphs, we say that G1 is a proper subgraph of G2 if E1 ( E2.
Proposition 5. The local independence model of a linear Hawkes process satisfies the pairwise
Markov property with respect to the causal graph of the process and no proper subgraph of the causal
graph has the property.

3 Graph theory and independence models

In order to give full proofs of the statements of the paper, we need a number of graph-theoretical con-
cepts that are otherwise not central to our presentation. We have included these in the supplementary
material and in this section we only introduce the most central concepts.

A graph is a pair (V,E) where V is a finite set of nodes and E a finite set of edges. An edge can
be of different types, and we will use ∼ to denote a generic edge of any type. Each edge is between
a pair of nodes (not necessarily distinct), and for α, β ∈ V , e ∈ E, we will write α e∼ β to denote
that the edge e is between α and β. We will in particular consider the class of directed graphs (DGs)
where between each pair of nodes α, β ∈ V one has a subset of the edges {α→ β, α← β}, and we
say that these edges are directed.

Let G1 = (V,E1) and G2 = (V,E2) be graphs. We say that G2 is a supergraph of G1, and write
G1 ⊆ G2, if E1 ⊆ E2. For a graph G = (V,E) such that α, β ∈ V , we write α →G β to indicate
that the directed edge from α to β is contained in the edge set E. In this case we say that α is a
parent of β. We let paG(β) denote the set of nodes in V that are parents of β. We write α 6→G β to
indicate that the edge is not in E. For simplicity, we will throughout the paper assume that all loops,
i.e. self-edges α→ α, are present in the graphs we consider. This graphical assumption corresponds
to implicitly assuming that every process of the dynamical system depends on its own past in a direct
fashion.

A walk is a finite sequence of nodes, αi ∈ V , and edges, ei ∈ E, 〈α1, e1, α2, . . . , αn, en, αn+1〉
such that ei is between αi and αi+1 for all i = 1, . . . , n and such that an orientation of each edge is
known. We say that a walk is nontrivial if it contains at least one edge. A path is a walk such that no
node is repeated. A directed path from α to β is a path such that all edges are directed and point in
the direction of β.
Definition 6 (Trek, directed trek). A trek between α and β is a (nontrivial) path 〈α, e1, . . . , en, β〉
with no colliders [8]. We say that a trek between α and β is directed from α to β if en has a head at
β. We use dt(β) to denote the set of nodes γ such that there exists a directed trek from γ to β.

As an example, we note that a directed path from α to β is a trek and it is also a directed trek from α
to β. However, it is not a directed trek from β to α.
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We will formulate the following properties using a general independence model, I, on V . Let P(·)
denote the power set of some set. An independence model on V is simply a subset of P(V ) ×
P(V ) × P(V ) and can be thought of as a collection of independence statements that hold among
the processes/variables indexed by V . In subsequent sections, the independence models will be
defined using the notion of local independence. In this case, for A,B,C ⊆ V , A 6→λ B | C is
equivalent with writing 〈A,B | C〉 ∈ I in the abstract notation, and we use the two interchangeably.
In the following, we also use µ-separation which is a ternary relation and a dynamical model (and
asymmetric) analogue to d-separation or m-separation. A definition and references are given in the
supplementary material. For G = (V,E) and A,B,C ⊆ V we write A ⊥µ B | C [G] to denote that
B is µ-separated from A given C in the graph G.
Definition 7 (Global Markov property). We say that an independence model I satisfies the global
Markov property with respect to a DG, G = (V,E), if A ⊥µ B | C [G] implies 〈A,B | C〉 ∈ I for
all A,B,C ⊆ V .

From Proposition 5, we know that the local independence model of a linear Hawkes process satisfies
the pairwise Markov property with respect to the causal graph of the process, and using the results in
[4, 14] it also satisfies the global Markov property with respect to this graph.
Definition 8 (Faithfulness). We say that I is faithful with respect to a DG, G = (V,E), if 〈A,B |
C〉 ∈ I implies A ⊥µ B | C [G] for all A,B,C ⊆ V .

4 Learning algorithms

In this section, we will define a faithfulness-type assumption that will be used to ensure the soundness
of the learning algorithms. We then state a very general class of algorithms which is easily seen to
provide sound causal learning and we describe some specific algorithms.

We throughout assume that there is some underlying DG, D0 = (V,E), describing the causal model
and we wish to output PO(D0). However, this graph is not in general identifiable from the local
independence model. In the supplementary material, we argue that for an equivalence class of parent
graphs, there exists a unique member of the class which is a supergraph of all other members. Denote
this unique graph by D̄. Our algorithms will output supergraphs of D̄, and the output will therefore
also be supergraphs of the true parent graph.

We assume we are in the ’oracle case’, i.e. have access to a local independence oracle that provides
the correct answers. We will say that an algorithm is sound if it in the oracle case outputs a supergraph
of D̄ and that it is complete if it outputs D̄. We let IO denote the local independence model restricted
to subsets of O, i.e. this is observed part of the local independence model.

4.1 Ancestral faithfulness

Under the faithfulness assumption, every local independence implies µ-separation in the graph. We
assume a weaker, but similar, property to argue that the our algorithms are sound. For learning
marginalized DAGs, weaker types of faithfulness have also been explored, see e.g. [24, 21, 22].
Definition 9 (Ancestral faithfulness). Let I be an independence model and let D be a DG. We say
that I satisfies ancestral faithfulness with respect to D if for every α, β ∈ V and C ⊆ V \ {α},
〈α, β | C〉 ∈ I implies that there is no µ-connecting directed path from α to β given C in D.

It follows from the definition that faithfulness implies ancestral faithfulness and for general indepen-
dence models ancestral faithfulness is a strictly weaker property than faithfulness. We conjecture
that local independence models of linear Hawkes processes satisfy ancestral faithfulness with respect
to their causal graphs. Heuristically, if there is a directed path from α to β which is not blocked by
any node in C, then information should flow from α to β, and this cannot be ‘cancelled out’ by other
paths in the graph as the linear Hawkes processes are self-excitatory, i.e. no process has a dampening
effect on any process.

4.2 Simple screening algorithms

As a first step in describing a causal screening algorithm, we will define a very general class of learning
algorithms that simply test local independences and sequentially remove edges. It is easily seen that
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under the assumption of ancestral faithfulness every algorithm in this class gives sound learning in
the oracle case. The complete DG on nodes V is the DG with edge set {α→ β | α, β ∈ V }.
Definition 10 (Simple screening algorithm). We say that a learning algorithm is a simple screening
algorithm if it starts from a complete DG on nodes O and removes an edge α → β only if a
conditioning set C ⊆ O \ {α} has been found such that 〈α, β | C〉 ∈ IO.

The following results give a clear and causally sound interpretation of the output of a simple screening
algorithm.
Proposition 11. Assume that I satisfies ancestral faithfulness with respect to D0 = (V,E). The
output of any simple screening algorithm is sound in the oracle case.
Corollary 12. Assume ancestral faithfulness of I with respect to D0 and let A,B,C ⊆ O. If every
directed path from A to B goes through C in the output graph of a simple screening algorithm, then
every directed path from A to B goes through C in D0.
Corollary 13. If there is no directed path from A to B in the output graph, then there is no directed
path from A to B in D0.

4.3 Parent learning

In the previous section, it was shown that if edges are only removed when a separating set is found
the output is sound under the assumption of ancestral faithfulness. In this section we give a specific
algorithm. The key observation is that we can easily retrieve structural information from a rather
small subset of local independence tests.

Let Dt denote the output from Subalgorithm 1 (see below). The following result shows that under the
assumption of faithfulness, α→Dt β if and only if there is a directed trek from α to β in D0.
Proposition 14. There is no directed trek from α to β in D0 if and only if α ⊥µ β | β [D0].

We will refer to running first Subalgorithm 1 and then Subalgorithm 2 (using the the output DG from
the first as input to the second) as the causal screening (CS) algorithm. The following proposition
follows directly from the definitions of the subalgorithms.
Proposition 15. The CS algorithm is a simple screening algorithm.

It is of course of interest to understand under what conditions the edge α→ β is guaranteed to be
removed by the CS algorithm when it is not in the underlying target graph. In the supplementary
material we state and prove a result describing one such a condition.

input :a local independence oracle for
IO

output :a DG on nodes O
initialize D as the complete DG on O;
foreach (α, β) ∈ V × V do

if α 6→λ β | β then
delete α→ β from D;

end
end
return D

Subalgorithm 1: Trek step

input :a local independence oracle for
IO and a DG, D = (O,E)

output :a DG on nodes O
foreach (α, β) ∈ V × V such that
α→D β do

if α 6→λ β | paD(β) \ {α} then
delete α→ β from D;

end
end
return D

Subalgorithm 2: Parent step

4.4 Ancestry propagation

In this section, we describe an additional step which propagates ancestry by reusing the output of
Subalgorithm 1 to remove further edges. This comes at a price as one needs to assume faithfulness in
order to guarantee that the result will be sound. The idea is similar to ACI [11] that also uses that
ancestry is transitive.

In ancestry propagation, we exploit the fact that any trek between α and β composed with the edge
β → γ gives a directed trek from α to β. We only use the trek between α and β ’in one direction’
and this is because we should be slightly careful if γ is actually on the trek between α and β. In
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input :a local independence oracle for IO and a DG, D = (O,E)
output :a DG on nodes O
initialize Er = ∅ as the empty edge set;
foreach (α, β, γ) ∈ V × V × V such that α, β, γ are all distinct do

if α→D β, β 6→D α, β →D γ, and α 6→D γ then
update Er = Er ∪ {β → γ};

end
end
Update D = (V,E \ Er);
return D

Subalgorithm 3: Ancestry propagation

Subalgorithm 4 in the supplementary material, we exploit a trek between α and β twice, but at the
cost of an additional local independence test.

We can construct an algorithm by first running Subalgorithm 1, then Subalgorithm 3, and finally
Subalgorithm 2 (using the output of one subalgorithm as input to the next). We will call this the
CSAPC algorithm. If we use Subalgorithm 4 instead of Subalgorithm 3, we will call this the CSAP.
Proposition 16. If I is faithful with respect to D0, then the CSAP and CSAPC algorithms both
provide sound learning.

5 Application and simulations

When evaluating the performance of a sound screening algoritm, the output graph is guaranteed to be
a supergraph of the true parent graph, and we will say that edges that are in the output but not in the
true graph are excess edges. For a node in a directed graph, the indegree is the number of directed
edges adjacent with and pointed into the node, and the outdegree is the number of directed edges
adjacent with and pointed away from the node.

5.1 C. elegans neuronal network

Caenorhabditis elegans is a roundworm in which the network between neurons has been mapped
completely [20]. We apply our methods to this network as an application to a highly complex
network. It consists of 279 neurons which are connected by both non-directional gap junctions and
directional chemical synapses. We will represent the former as an unobserved process and the latter
as a direct influence. From this network, we sampled subnetworks of 75 neurons each (details in the
supplementary material) and computed the output of the CS algorithm. These subsampled networks
had on average 1109 edges (including bidirected edges representing unobserved processes, see the
supplementary material) and on average 424 directed edges. The output graphs had on average 438
excess edges which is explained by the fact that there are many unobserved nodes in the graphs. To
compare the output to the true parent graph, we computed the rank correlation between the indegrees
of the nodes in the output graph and the indegrees of the nodes in the true parent graph, and similarly
for the outdegree (indegree correlation: 0.94, outdegree correlation: 0.52). Finally, we investigated
the method’s ability to identify the observed nodes of highest directed connectivity (i.e. highest in-
and outdegrees). The neuronal network of c. elegans is inhomogeneous in the sense that some neurons
are extremely highly connected while others are only very sparsely connected. Identifying such
highly connected neurons is of interest, and we considered the 15 nodes of highest indegree/outdegree
(out of the 75 observed nodes). On average, the CS algorithm placed 13.4 (in) and 9.2 (out) of these
15 among the 15 most connected nodes in the output graph.

From the output of the CS algorithm, we can easily find areas of the neuronal network which mediates
the information from one area to another, e.g. using Corollary 12.

5.2 Comparison of algorithms

In this section we compare the proposed causal screening algorithms with previously published
algorithms that solve similar problems. In [14], the authors propose two algorithms, one of which is
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Figure 2: Comparison of performance.

sure to output the correct graph. The authors note that this complete algorithm is computationally very
expensive and adds little extra information, and therefore we will only consider their other algorithm
for comparison. We will call this algorithm dynamical FCI (dFCI) as it resembles the FCI algorithm
as noted by the authors of [14]. The algorithm actually solves a harder learning problem and provides
more information (see details in the supplementary material), however it is computationally infeasible
for many problems.

The Causal Analysis (CA) algorithm of [12] is a simple screening algorithm and we have in this
paper argued that it is sound for learning the parent graph of the underlying graph under the weaker
assumption of ancestral faithfulness. Note that even though this algorithm uses a large number of
tests, it is not guaranteed to provide complete learning as there may be inseparable nodes that are not
adjacent [13, 14].

For the comparison of these algorithms, two aspects are important. As they are all sound, one aspect
is the number of excess edges. The other aspect is of course the number of tests needed to provide
their output. The CS and CSAPC algorithms use at most 2n(n− 1) tests and empirically the CSAP
uses roughly the same number as the two former. This makes them feasible in even large graphs.
The quality of their output is dependent on the sparsity of the graph, though the CSAP and CSAPC
algorithms can deal considerably better with less sparse graphs (Subfigure 2b).

6 Discussion

We suggested inexpensive constraint-based methods for learning causal structure based on testing
local independence. An important observation is that local independence is asymmetric while
conditional independence is symmetric. In a certain sense, this may help when constructing learning
algorithms as there is no need of something like an ’orientation phase’ as in the FCI. This facilitates
using very simple methods to give sound causal learning as we do not need the independence structure
in full to give interesting output.

The level of information in the output graph of the causal screening algorithms is dependent on the
sparsity of the graph. However, even in examples with very little sparsity, as in the c.elegans neuronal
network, interesting structural information can be learned using these simple methods.

By outputting only the directed part of the underlying causal structure, we may be able to answer
structural questions, but not other questions e.g. relating to causal effect estimation. However, by
restricting the scope we can provide a sound algorithm which can reveal interesting information about
the causal structure.

We showed that the proposed algorithms have a large computational advantage over previously
published algorithms within this framework. This makes it feasible to consider causal learning even
in large networks with unobserved processes and the CS algorithms thus provide methods for sound
screening in causal dynamical models.
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