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This document contains additional graph theory, results, and definitions, as well as the proofs of the
main paper.

1 Graph theory

The additional graph theory is useful in the proofs, and we can also give an alternative definition of
the parent graph using a graphical marginalization operation that we will describe.

In the main paper, we introduce the class of DGs to represent causal structures. One can represent
marginalized DGs using the larger class of DMGs. A directed mixed graph (DMG) is a graph such
that any pair of nodes α, β ∈ V is joined by a subset of the edges {α→ β, α← β, α↔ β}. We say
that edges of the types α→ β and α← β are directed, and that α↔ β is bidirected.

We also introduced a walk 〈α1, e1, α2, . . . , αn, en, αn+1〉. We say that α1 and αn+1 are endpoint
nodes. A nonendpoint node αi on a walk is a collider if ei−1 and ei both have heads at αi, and
otherwise it is a noncollider. A cycle is a path 〈α, e1, . . . , β〉 composed with an edge between α and
β. We say that α is an ancestor of β if there exists a directed path from α to β. We let an(β) denote
the sets of nodes that are ancestors of β.

For DAGs d-separation is often used for encoding independences. We use the analogous notion of
µ-separation which is a generalization of δ-separation [1–4].

Definition S1 (µ-separation). Let G = (V,E) be a DMG, and let α, β ∈ V and C ⊆ V . We say that
a (nontrivial) walk from α to β, 〈α, e1, . . . , en, β〉, is µ-connecting given C if α /∈ C, the edge en
has a head at β, every collider on the walk is in an(C) and no noncollider is in C. Let A,B,C ⊆ V .
We say that B is µ-separated from A given C if there is no µ-connecting walk from any α ∈ A to
any β ∈ B given C. In this case, we write A ⊥µ B | C, or A ⊥µ B | C [G] if we wish to emphasize
the graph to which the statement relates.

We use the class of DGs use to represent the underlying, data-generating structure. When only parts
of the causal system is observed, the class of DMGs can be used for representing marginalized DGs
[4]. This can be done using latent projection [5, 4] which is a map that for a DG (or more generally,
for a DMG), D = (V,E), and a subset of observed nodes/processes, O ⊆ V , provides a DMG,
m(D, O), such that for all A,B,C ⊆ O,

A ⊥µ B | C [D]⇔ A ⊥µ B | C [m(D, O)].

See [4] for details on this graphical marginalization. We say that two DMGs, G1 = (V,E1),G2 =
(V,E2), are Markov equivalent if

A ⊥µ B | C [G1]⇔ A ⊥µ B | C [G2],
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for all A,B,C ⊆ V , and we let [G1] denote the Markov equivalence class of G1. Every Markov
equivalence class of DMGs has a unique maximal element [4], i.e. there exists G ∈ [G1] such that G
is a supergraph of all other graphs in [G1].

For a DMG, G, we will let D(G) denote the directed part of G, i.e. the DG obtained by deleting all
bidirected edges from G.

Proposition S2. Let D = (V,E) be a DG, and let O ⊆ V . Consider G = m(D, O). For α, β ∈ O it
holds that α ∈ anD(β) if and only if α ∈ anD(G)(β). Furthermore, the directed part of G equals the
parent graph of D on nodes O, i.e. D(G) = PO(D).

Proof. Note first that α ∈ anD(β) if and only if α ∈ anG(β) [4]. Ancestry is only defined by
the directed edges, and it follows that α ∈ anG(β) if and only if α ∈ anD(G)(β). For the second
statement, the definition of the latent projection gives that there is a directed edge from α to β in G
if and only if there is a directed path from α to β in D such that no nonendpoint node is in O. By
definition, this is the parent graph, PO(D).

In words, the above proposition says that if G is a marginalization (done by latent projection) of
D, then the ancestor relations of D and D(G) are the same among the observed nodes. It also says
that our learning target, the parent graph, is actually the directed part of the latent projection on the
observed nodes. In the next subsection, we use this to describe what is actually identifiable from the
induced independence model of a graph.

1.1 Maximal graphs and parent graphs

Under faithfulness of the local independence model and the causal graph, we know that the maximal
DMG is a correct representation of the local independence structure in the sense that it encodes
exactly the local independences that hold in the local independence model. From the maximal DMG,
one can use results on equivalence classes of DMGs to obtain every other DMG which encodes the
observed local independences [4] and from this graph one can find the parent graph as simply the
directed part. However, it may require an infeasible number of tests to output such a maximal DMG.
This is not surprising, seeing that the learning target encodes this complete information on local
independences.

Assume that D0 = (V,E) is the underlying causal graph and that G0 = (O,F ), O ⊆ V is the
marginalized graph over the observed variables, i.e. the latent projection of D0. In principle, we
would like to output P(D0) = D(G0), the directed part of G0. However, no algorithm can in general
output this graph by testing only local independences as Markov equivalent DMGs may not have the
same parent graph. Within each Markov equivalence class of DMGs, there is a unique maximal graph.
Let Ḡ denote the maximal graph which is Markov equivalent of G0. The DG D(Ḡ) is a supergraph of
D(G0) and we will say that a learning algorithm is complete if it is guaranteed to output D(Ḡ) as no
algorithm testing local independence only can identify anything more than the equivalence class.

2 Complete learning

The CS algorithm provides sound learning of the parent graph of a general DMG under the assumption
of ancestral faithfulness. For a subclass of DMGs, the algorithm actually provides complete learning.
It is of interest to find sufficient graphical conditions to ensure that the algorithm removes an edge
α → β which is not in the true parent graph. In this section, we will simply state and prove one
such condition which can be understood as ’the true parent set is always found for unconfounded
processes’. We let D denote the output of the CS algorithm.

Proposition S3. If α 6→G0 β and there is no γ ∈ V \ {β} such that γ ↔G0 β, then α 6→D β.

Proof. Let D1,D2, . . . ,DN denote the DGs that are constructed when running the algorithm by
sequentially removing edges, starting from the complete DG, D1. Consider a walk from α to β
in G0. It must be of the form α ∼ . . . ∼ γ → β, γ 6= α. Under ancestral faithfulness, the edge
γ → β is in D, thus γ ∈ paDi

(β) for all Di that occur during the algorithm, and therefore when
〈α, β | paDi

(β) \ {α}〉 is tested, the walk is closed. Any walk from α to β is of this form, thus also
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closed, and we have that α ⊥µ β | paDi
(β) and therefore 〈α, β | paDi

(β) \ {α}〉 ∈ I. The edge
α→Di β is removed and thus absent in the output graph, D.

3 Ancestry propagation

We state Subalgorithm 4 here.

input :a local independence oracle for IO and a DG, D = (O,E)
output :a DG on nodes O
initialize Er = ∅ as the empty edge set;
foreach (α, β, γ) ∈ V × V × V such that α, β, γ are all distinct do

if α ∼D β, β →D γ, and α 6→D γ then
if 〈α, γ | ∅〉 ∈ IO then

update Er = Er ∪ {β → γ};
end

end
end
Update D = (V,E \ Er);
return D

Subalgorithm 4: Ancestry propagation

Composing Subalgorithm 1, Subalgorithm 4, and Subalgorithm 2 is referred to as the causal screening,
ancestry propagation (CSAP) algorithm. If we use Subalgorithm 3 instead of Subalgorithm 4, we
call it the CSAPC algorithm (C for cheap as this does not entail any additional independence tests
compared to CS).

4 Application and simulations

In this section, we provide some additional details about the c. elegans neuronal network and the
simulations.

4.1 C. elegans neuronal network

For each connection between two neurons a different number of synapses are present (ranging from 1
to 37). We only consider connections with more than 4 synapses when we define the true underlying
network. When sampling the subnetworks, highly connected neurons were sampled with higher
probability to avoid a fully connected subnetwork.

4.2 Comparison of algorithms

As noted in the main paper, the dFCI algorithm solves a strictly harder problem. By using the
additional graph theory in the supplementary material, we can understand the output of the dFCI
algorithm as a supergraph of the maximal DMG, Ḡ. There is also a version of the dFCI which is
guaranteed to output not only a supergraph of Ḡ, but the graph Ḡ itself. Clearly, from the output of
the dFCI algorithm, one can simply take the directed part of the output and this is a supergraph of the
underlying parent graph.

5 Proofs

In this section, we provide the proofs of the result in the main paper.

Proof of Proposition 5. Let D denote the causal graph. Assume first that α 6→D β. Then gβα is
identically zero over the observation interval, and it follows directly from the functional form of λβt
that α 6→ β | V \ {α}. This shows that the local independence model satisfies the pairwise Markov
property with respect to D.
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If instead gβα 6= 0 over J , there exists r ∈ J such that gβα(r) 6= 0. From continuity of gβα there
exists a compact interval of positive measure, I ⊆ J , such that infs∈I(g

βα(s)) ≥ gβαmin and gβαmin > 0.
Let i0 and i1 denote the endpoints of this interval, i0 < i1. We consider now the events

Dk = (Nα
T−i0 −N

α
T−i1 = k,Nγ

T = 0 for all γ ∈ V \ {α}) (1)

k ∈ N0. Then under Assumption 4, for all k

λβT1Dk
≥ 1Dk

∫
I

gβα(T − s) dNα
s ≥ g

βα
min · k · 1Dk

.

Assume for contradiction that β is locally independent of α given V \ {α}. Then λβT = E(λβT |
FVT ) = E(λβT | F

V \{α}
T ) is constant on ∪kDk and furthermore P(Dk) > 0 for all k. However, this

contradicts the above inequality when k →∞.

Proof of Proposition 11. Let D denote the DG which is output by the algorithm. We should then
show that P(D0) ⊆ D. Assume that α→P(D0) β. In this case, there is a directed path from α to β in
D0 such that no nonendpoint node on this directed walk is in O (the observed coordinates). Therefore
for any C ⊆ O \ {α} there exists a directed µ-connecting walk from α to β in D0 and by ancestral
faithfulness it follows that 〈α, β | C〉 /∈ I. The algorithm starts from the complete directed graph,
and the above means that the directed edge from α to β will not be removed.

Proof of Corollary 12. Consider some directed path from α to β in D0 on which no node is in C.
Then there is also a directed path from α to β on which no nodes is in C in the graph P(D0), and
therefore also in the output graph using Proposition 11.

Proof of Proposition 14. Assume that there is a µ-connecting walk from α to β given {β}. If this
walk has no colliders, then it is a directed trek, or can be reduced to one. Otherwise, assume that γ
is the collider which is the closest to the endpoint α. Then γ ∈ an(β), and composing the subwalk
from α to γ with the directed path from γ to β gives a directed trek. On the other hand, assume there
is a directed trek from α to β. This is µ-connecting from α to β given {β}.

Proof of Proposition 16. Assume β →P(D0) γ. Subalgorithms 1 and 2 are both simple screening
algorithms, and they will not remove this edge. Assume for contradiction that β → γ is removed
by Subalgorithm 3. Then there must exist α 6= β, γ and a directed trek from α to β in D0. On this
directed trek, γ does not occur as this would imply a directed trek either from α to γ or from β to
γ, thus implying α →D γ or β →D α, respectively (D is the output graph). As γ does not occur
on the trek, composing this trek with the edge β → γ would give a directed trek from α to γ. By
faithfulness, 〈α, γ | γ〉 /∈ I, and this is a contradiction as α → γ would not have been removed
during Subalgorithm 1.

We consider instead CSAP. Assume for contradiction that β → γ is removed during Subalgorithm 4.
There exists in D0 either a directed trek from α to β or a directed trek from β to α. If γ is on this trek,
then γ is not µ-separated from α given the empty set (recall that there are loops at all nodes, therefore
also at γ), and using faithfulness we conclude that γ is not on this trek. Composing it with the edge
β → γ would give a directed trek from α to γ and using faithfulness we obtain a contradiction.
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