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Some influential causal models

ADAM and MAKRO are examples of macroeconomic models of the Danish
economy. They combine historic data and economic theory to produce predictions
about economic indicators.

They are causal in the sense that they can produce predictions under unseen
interventions, e.g., changes to taxation. This makes them tools for policy
evaluation.
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The beginning

We assume that Xt = (X 1
t ,X

2
t , . . . ,X

n
t )

⊤, t ∈ Z, is a stochastic process in
discrete time. For D ⊆ V = {1, 2, . . . , n}, we let XD

t denote {X i
t : i ∈ D}.

X j
t = f jt (. . . ,X

pajt,2
t−2 ,X

pajt,1
t−1 , εjt), (1)

where εt are a sequence of iid vectors with independent entries, and pajt,s ⊆ V .

The collection of structural assignments in (1) along with a distribution of εjt
constitute a dynamic structural causal model (SCM) [Peters et al., 2017].

If we choose a particularly simple SCM, Xt is a vector-autoregressive process
(VAR),

Xt =

p∑
k=1

AkXt−i + εt

where Ak are n × n matrices.
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The beginning

We should define what we mean by ‘causal’.1 The equations are actually
assignments in the following sense. We define an intervention as an action that
exogenously fixes one of the variables at a certain value (this is known as a
do-intervention [Pearl, 2009]),

X j
t = c . (2)

The interventional distribution (for the intervention do(X j
t = c)) is the

distribution entailed by the SCM where the original X j
t -equation has been replaced

by (2), and all other equations remain unchanged (this is a hard intervention, one
can define more general interventions).

This leads to an entire collection of interventional distributions and one
observational (no intervention). We will only assume access to (observations from)
the observational distribution.

We call this interventional causality for ease of reference.

1There are different ways to do this. We follow the approach in Pearl [2009].
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Causal graphs

A classical statistical model is a collection of distributions. If the model is
parametrized, a choice of parameters leads to a single distribution. A causal model
entails more than a classical model: It specifies not only an observational
distribution, but also interventional distributions.

From a structural causal model, we can define a full-time causal graph with nodes
{X j

t : t ∈ Z, j ∈ V } such that X i
t−s → X j

t if X i
t−s ∈ pajt,s . That is, an edge from

X i
s to X j

t means that X i
s is an argument in f jt .
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Causal graphs

As an example, we let n = 3, V = {1, 2, 3}, and for all t

X 1
t = f 1t (X

1
t−1,X

2
t−1, ε

1
t ),

X 2
t = f 2t (X

2
t−1, ε

2
t ),

X 3
t = f 3t (X

2
t−1,X

3
t−1, ε

3
t ).
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One can also define more general interventions, including soft interventions.
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Causal graphs

We now consider the intervention do(X 3
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.
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Causal graphs

From the full-time causal graph, we define a (summary) causal graph on nodes V

such that i → j if there exists an edge X i
s → X j

t for some s, t in the full-time
graph.
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The story

Today, I will talk about two simple concepts in time series analysis that are
‘causal’, either in name or in interpretation. When these concepts are introduced,
they are often given a cautiously causal interpretation.

We will see that, under the right assumptions, both concepts are closely related to
our notion of causality from the previous slides.
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Granger causality

If D ⊆ V , let XD
t = {X i

t : i ∈ D} and XD
<t = {X i

s : i ∈ D, s < t}. If D = {d},
then XD

t = X d
t and XD

<t = {. . . ,X d
t−3,X

d
t−2,X

d
t−1}.

Definition (Granger (non)causality, Granger [1969], Eichler and Didelez [2010])

We say that A is Granger noncausal for B given C , and write A ̸→ B | C , if for all
t ∈ Z,

XA
<t ⊥⊥ XB

t | XC
<t .

Granger causality is analogous to local
independence [Schweder, 1970, Aalen,
1987] in continuous-time processes.

Note that Granger (non)causality is not
symmetric, i.e., A ̸→ B | C does not
imply B ̸→ A | C .
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Granger causality

The original paper has 36000+ citations on Google Scholar. Papers in
econometrics, neuroscience, environmental sciences, etc., have used Granger
causality to study influence between coordinate processes in a multivariate
stochastic process.

There is a large number of generalizations and other related theoretical work.
Shojaie and Fox [2022] give a recent overview.
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Granger causality – why it is not causal

It is quite clear that Granger causality does not correspond to interventional
causality.2 Granger (in)dependence would be a better name.

Example (Peters et al. [2017])

Let V = {1, 2, 3}. We see that an intervention on process 1 will not change the
distribution of process 3. However, process 1 may be Granger causal for process 3
given process 3, i.e., X 1

<t ⊥⊥ X 3
t | X 3

<t need not hold.

. . .
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2Clive Granger acknowledged a similar limitation in the original paper [Granger, 1969].
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Granger causality – learning the causal graph

Applied papers that use Granger causality often state that Granger causality is not
‘real causality’ – but omit the fact that under the right set of assumptions there is
a strong link between Granger causality and interventional causality.

Theorem

Under regularity conditions, i is Granger causal for j given V \ {i} if and only if
the edge i → j is in the (summary) causal graph.

This means that we can actually learn the causal graph from the observational
distribution of Xt using tests of Granger causality!

Søren Wengel Mogensen Deceivingly simple causal effects 13 / 28



Granger causality – learning the causal graph

Applied papers that use Granger causality often state that Granger causality is not
‘real causality’ – but omit the fact that under the right set of assumptions there is
a strong link between Granger causality and interventional causality.

Theorem

Under regularity conditions, i is Granger causal for j given V \ {i} if and only if
the edge i → j is in the (summary) causal graph.

This means that we can actually learn the causal graph from the observational
distribution of Xt using tests of Granger causality!

Søren Wengel Mogensen Deceivingly simple causal effects 13 / 28



Granger causality – the partially observed case

As before, we assume that there exists a process, Xt , with an interventionally
causal interpretation. Now we observe only a subset of the coordinate processes,
O ⊆ V . If O ̸= V , we are not able to test if i is Granger causal for j given
V \ {i}.

We can still test if i is Granger causal for j given C when i , j ∈ O and C ⊆ O!
Each (summary) causal graph (a directed graph) can be marginalized to find a
directed mixed graph (DMG) (with bidirected edges, ↔, and directed edges →)
that represents the same set of Granger causalities (µ-separations) as the causal
graph when restricting to O.
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The global Markov property

µ-separation is a graphical algorithm which is analogous to d-separation in
directed acyclic graphs (DAGs) [Pearl, 2009] and a generalization of δ-separation
Didelez [2008].

Theorem

We let D = (V ,E ) be the causal graph of Xt , and we let i , j ∈ V , C ⊆ V . Under
regularity conditions,

i ⊥µ j | C [D] ⇒ i is Granger noncausal for j given C .
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Markov equivalence

Let G = (V ,E ) and Ḡ = (V , Ē ) be DMGs. We say that G and Ḡ are Markov
equivalent if for all A,B,C ⊆ V ,

A ⊥µ B | C [G] ⇔ A ⊥µ B | C [Ḡ].

We use [G] to denote the Markov equivalence class of G. It is possible to
characterize Markov equivalence classes of DMGs, to find a graphical
representation of each Markov equivalence class, and to learn an equivalence class
from data [Mogensen and Hansen, 2020, Mogensen, 2024a].

This means that even when some coordinate processes are unobserved, tests of
Granger causality can output the collection of (marginalized) graphs that are
equivalent with the causal graph in the sense that they represent the same set of
Granger causalities.

This is analogous to causal discovery for DAG-based models using d-separation
[Spirtes and Zhang, 2018].
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Structure learning

time
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Granger causality

In summary, Granger causality is a ternary independence relation (just like
conditional independence of random variables). This independence relation
identifies the causal graph when we have full observation. Under partial
observation, it can still identify an equivalence class of ‘marginalized graphs’
which contains the marginalized version of the true causal graph.
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Causal effects

We saw that Granger causality can tell us something about causal structure. We
now look at causal effects instead. We assume throughout that Xt is a stationary
VAR-process.

Definition (Total causal effect)

Let t, s be integers, and let k , l ∈ V = {1, 2, . . . , n}. The total causal effect of X k
t

on X l
t+s is defined as

τ skl = τ tskl =
∂

∂x
E (X l

t+s | do(X k
t = x)).

We see that for s < 0, τ skl = 0.

The total causal effect of Xk on Xl is the sequence of lag-specific total causal
effects, (τ skl)s .
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Total causal effects

Using the infinite graph with nodes {X k
t : k ∈ V , t ∈ Z} such that X k

t → X l
t+s if

(As)lk ̸= 0, τ skl can be computed as the sum of products of edge coefficients along
directed paths from X k

t to X l
t+s :

Proposition

It holds that

τ skl =

( ∑
i1+...+ik=s

Ai1 · . . . · Aik

)
lk

where the summation is over all ordered partitions of s.

Total causal effects in VAR-processes are closely related to impulse response
functions. One can find slightly different versions of these — Lütkepohl [2005]
defines forecast error impulse responses and these equal total causal effects in
VAR-processes.
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Impulse responses

Impulse response analysis is commonly used in time series analysis and (implicitly)
given a causal interpretation. Lütkepohl [2005] defines the (forecast error) impulse
response to process i as the response of the system to a unit shock at time t in
process i (i.e., εit = 1) when all other noise variables are zero.

The impulse responses/total causal effects are also the coefficients, Φk , of a
moving-average representation of Xt ,

Xt =
∞∑
k=0

Φkεt−k ,

and this is sometimes used as a definition for the impulse responses.
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Impulse responses

Often a word of caution is added when introducing impulse responses. Lütkepohl
[2005] writes

“All effects of omitted variables are assumed to be in the innovations. If important
variables are omitted from the system, this may lead to major distortions in the
impulse responses and makes them worthless for structural interpretations.

In essence, if some processes are unobserved the above cautions us that the
impulse responses to a shock in i on j in a marginalized process, XO

t , i , j ∈ O, are
not necessarily the same is in the original process, XV

t (e.g., when computing
them as MA-coefficients).3

If we have a partially observed time series (we observe coordinate processes O
instead of V ), it is in general not possible to identify the total causal effects.
However, one can find assumptions on the causal graph that imply identifiability
of total causal effects.

3All of this can also be defined for the slightly more general VARMA-processes that are closed
under marginalization, i.e., impulse responses will also be well-defined for the marginal process.
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Identification of causal effects under partial
observation

We let k, l ∈ C , C ⊆ V , and we let Zt = XC
t be the subprocess corresponding to

the coordinates in C . Under some regularity conditions, we get the following when
τ̃ skl is a particular estimator based on the Yule-Walker equations.

Theorem (Mogensen [2024b])

Let k , l ∈ C ⊆ V . If all µ-connecting walks in the (summary) causal graph from k
to l given C \ {k} have a tail at the endpoint k , k → . . . l , then τ̃ skl is a consistent
estimator of τ skl .

This is analogous to causal adjustment in DAG-based models, see, e.g., Henckel
et al. [2022].

(asymptotic normality also holds such that one can analyze the efficiency of
different sets C that meet the requirement of the theorem similar to Henckel et al.
[2022] in the DAG setting.)
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Example

1 2 3

45

The set C = {1, 3} does not meet the requirement in the theorem when
estimating the total causal effect of 1 on 3. On the other hand, C = {1, 3, 4} does
meet the requirement.

This also allows a slight generalization where the noise variables, εjt , may be
correlated within lag (E (εtε

⊤
t ) is not diagonal), represented by blunt edges,

.
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The end

Time series literature has much work on causality, often including disclaimers that
one should be cautious when there is a risk of unobserved confounding
processes.

For Granger causality, we saw that there is a very clear link to the causal graph
under full observation. However, using tests of Granger causality, we can still learn
about the causal graph even in the case of partial observation.

Impulse responses can be thought of as total causal effects. Some texts caution
that impulse responses are not not necessarily meaningful under partial
observation. More precisely, we are interested in impulse responses of the
underlying causal process, and those are not identified from the observational
distribution without further assumptions.

Both are useful in the partially observed case, however, only if we delineate what
we are assuming about the process.
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Thank you for listening!
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