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Abstract
Instrumental variable methods are often used for parameter estimation in the presence of con-
founding. They can also be applied in stochastic processes. Instrumental variable analysis exploits
moment equations to obtain estimators for causal parameters. We show that in stochastic processes
one can find such moment equation using an integrated covariance matrix. This provides new in-
strumental variable methods, instrumental variable methods in a class of continuous-time process
as well as a unified treatment of discrete- and continuous-time processes.
Keywords: instrumental variables, point processes, linear Hawkes processes, VAR(p), time series,
causal inference, recurrent events

1. Introduction

Instrumental variable (IV) techniques have a long history in economics, engineering, and causal
inference, even if each field has its own standard formulation of the IV problem (Wright, 1928;
Reiersøl, 1941, 1945; Sargan, 1958; Joseph et al., 1961; Wong, 1966; Wong and Polak, 1967).
Recent work (Thams et al., 2022) formulates an instrumental variable problem in a (discrete-time)
time series model and provides a solution which employs conditional instruments (Brito and Pearl,
2002). Thams et al. (2022) take a variable-centric approach in that they identify sets of variables
at different lags that satisfy conditions enabling conditional instrumental variable techniques. This
paper takes a process-centric approach, essentially by integrating out time. The IV methods of this
paper therefore only use integrated measures of covariance of stochastic processes. The distinction
between variable- and process-centric will be described in more detail in Section 2.

The process-centric approach outlined in this paper is applicable to discrete-time stochastic pro-
cesses and can also be applied in continuous time as we show using a class of point processes. The
estimand is slightly different than in existing methods, however, the estimated parameter is easily
interpretable and it gives a simple measure summarizing the strength of the dependence between
stochastic processes.

As the paper uses both discrete- and continuous-time models, we only use the term time series
to refer to stochastic processes in discrete time. The paper is structured as follows. Section 2 de-
scribes a classical instrumental variable problem as well as the variable-centric and process-centric
approaches to IV estimation in time series. Section 3 describes the classes of stochastic processes
that we use in this paper as well as the causal estimands that our IV equations identify. Section
4 describes IV methods in both linear Hawkes processes and vector-autoregressive time series. In
both, we use an integrated covariance matrix to obtain new IV results and there is a strong concep-
tual similarity between the two, even though the interpretation of the parameters depends on the
model class. We also generalize the results slightly in the time series setting to allow more general
confounding (Section 5). Section 6 discusses estimation.

© 2022 S.W. Mogensen.
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Figure 1: Graphical representations of examples in Section 2. A: Graph representing the IV model
in Example 1. Each node (I, A, U,B) represents a random variable in the model. B:
Graph representing the time series IV model in Section 2. Each node represents a coor-
dinate process. C: An unrolled version of B (Danks and Plis, 2013) representing the time
series IV model. Each node represents a random variable. The analogous graph with a
node for every random variable in the time series is known as the full time graph (Peters
et al., 2013).

2. Instrumental variable methods

In this section, we give examples of a classical IV problem, that is, using variables that are not
indexed by time. We then compare this to a simple vector-autoregressive model of order 1, VAR(1).
In this model, we explain the variable- and process-centric approach to IV estimation and show
how the integrated covariance enables IV estimation. We assume zero-mean random variables as
the generalization is straightforward.

Example 1 (Classical IV) Assume we have observable, zero-mean random variables I, A,B and

B = φA+ ε

where ε is a zero-mean random variable and we wish to estimate φ ∈ R. If ε and A are correlated,
then least-squares estimation is biased. If I is uncorrelated with ε and E(AI) 6= 0, then we say
that I is an instrumental variable. Multiplying by I , and taking expectations, we obtain

E(BI) = φE(AI). (1)

This moment equation identifies the parameter φ as E(AI) 6= 0, even if A and ε are correlated, for
instance, due to an unobserved confounder, U , see Figure 1A.

From the above it is clear that the parameter φ is in fact identified from the covariance matrix
of the vector (A,B, I)T , that is, the observed covariance matrix is sufficient for IV estimation. The
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central idea of this paper is to use a different observable matrix in a stochastic process setting which
is also sufficient for IV estimation. The next example illustrates this in a simple manner.

Example 2 (Time series IV) We can instead consider a time series model with a similar structure
as in Example 1. Let Xt = (XI

t , X
A
t , X

B
t , X

U
t )T such that XU

t is unobserved and processes
XI
t , X

A
t , X

B
t , X

U
t are all one-dimensional and zero-mean. For simplicity, we assume Xt to be a

vector-autoregressive process of order 1, VAR(1),

Xt = ΦXt−1 + εt

where εt are identically distributed and independent random vectors with independent entries. The
matrix Φ has the following structure,

Φ =


ΦII 0 0 0
ΦAI ΦAA ΦAB ΦAU

0 ΦBA ΦBB ΦBU

0 0 0 ΦUU


We assume that each entry of Φ is nonzero if it is not explicitly zero above. There is a graphical

representation of this process in Figure 1B where Z → Y if and only if ΦY Z 6= 0 for Z, Y ∈
{I, A,B,U}. Graph C is an unrolled version (Danks and Plis, 2013) of graph B where the nodes
represent random variables and XZ

t−1 → XY
t if and only if ΦY Z 6= 0.

If we were to apply the approach from Example 1, we could useXI
t−2 as an instrument to identify

the parameter ΦBA which corresponds to the edge XA
t−1 → XB

t and write

XB
t = ΦBAX

A
t−1 + ΦBBX

B
t−1 + ΦBUX

U
t−1 + εBt

= ΦBAX
A
t−1 + ε̄Bt

E(XB
t X

I
t−2) = ΦBAE(XA

t−1X
I
t−2) + E(ε̄Bt X

I
t−2)

where ε̄Bt = ΦBBX
B
t−1 + ΦBUX

U
t−1 + εBt . Thams et al. (2022) (Proposition 6) show that using

the moment equation in (1), with I = XI
t−2, A = XA

t−1, B = XB
t , does not lead to consistent

estimation of ΦBA when both ΦII and ΦBB are nonzero. Therefore, naive application of classical
IV methods will not give consistent estimation in this problem. This can be explained by the fact
that there are confounding paths going back in time, e.g., XI

t−2 ← XI
t−3 → XA

t−2 → XB
t−1 → XB

t ,
corresponding to the fact that E(ε̄Bt X

I
t−2) is not necessarily zero.

Thams et al. (2022) instead provide consistent estimators of ΦBA using conditional instrumental
variables, using a conditional version of the moment equation in Equation (1). In this case, It−2
is a conditional instrument for the parameter ΦBA conditionally on XI

t−3. See Thams et al. (2022)
for a definition of conditional instrumental variables in time series and Theorem 7 of that paper.

The conditional instrumental variable approach is variable-centric in the sense that it identifies
finite sets of variables that satisfy assumptions of a conditional instrumental variable method as in
the above example. In this paper, we take a different approach which will also provide a solution to
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the instrumental variable problem in the above example. Instead of looking at covariances of single
variables, e.g., between XB

t and XI
t−2, we use an integrated measure of covariance, summing out

temporal dependence. Taking this point of view, we arrive at an unconditional instrumental variable
method in the above example, and we say that this is a process-centric approach as it uses the
integrated covariance. The rest of this section describes this idea in the VAR(1)-example, though
we no longer require XI

t , X
A
t , X

B
t , and XU

t to be one-dimensional.
Assume that the observed variables are mean-zero and that the largest absolute value of the

eigenvalues of Φ is strictly less than one. In the model from Example 2, we see that for a fixed t,
and using that εt−j and εt+i−k are independent unless i = k − j,

C =

∞∑
i=−∞

E
(
XtX

T
t+i

)
=

∞∑
i=−∞

E

 ∞∑
j=0

Φjεt−j

( ∞∑
k=0

Φkεt+i−k

)T
=

 ∞∑
j=0

Φj

Θ

 ∞∑
j=0

Φj

T

= (I − Φ)−1Θ(I − Φ)−T (2)

where Θ is the diagonal covariance matrix of εt. This result also follows from standard VAR-process
results (Brockwell and Davis, 2009) . We will say that Equation (2) is the integrated covariance
equation. We will see that the linear Hawkes model and more general time series models also satisfy
this equation when the parameter matrices are given the correct interpretations. There is also a clear
similarity with the parametrization of the observed covariance of a linear structural equation model
as noted by Mogensen (2022) in the linear Hawkes model. Therefore, more general identification
results from cyclic linear structural equation models may be used (Mogensen, 2022).

One can straightforwardly show that (I−ΦBB)−1ΦBA = CBI(CAI)
−1 when CAI is invertible,

thus identifying the matrix (I − ΦBB)−1ΦBA of normalized parameters (Subsection 3.3). This
matrix has a clear causal interpretation in both settings, see Subsection 3.3, summarizing the direct
influence of one subprocess on another. In the following sections, we show that this approach
also applies to more general time series models as well as to linear Hawkes processes, a class of
multivariate, continuous-time point processes.

3. Probabilistic Models

In this section, we introduce the class of linear Hawkes process as well as the time series models that
we are using in this paper. We also show that they satisfy a version of Equation (2) which enables
the instrumental variable methods of Section 4. Finally, we describe normalized parameters in more
detail as these will constitute our estimands.

3.1. Linear Hawkes Processes

A linear Hawkes process is a certain kind of point process. We give a short introduction here,
see also, e.g., Laub et al. (2015); Daley et al. (2003). We consider a filtered probability space
(Ω,F , (Ft), P ) where (Ft) is a filtration and an index set V = {1, 2, . . . , n}. For i ∈ V , there is a
sequence of random event times {T ik}k∈Z such that T ik < T ik+1 almost surely. We define a counting
process N i

t such that N i
t − N i

s =
∑

k 1s<T i
k≤t

. Furthermore, we assume that two events cannot
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Figure 2: Example data from a four-dimensional linear Hawkes process. Left: Example observed
data. Color and vertical placement indicate coordinate process (1, 2, 3, or 4) of the event.
Horizonal placement indicates time of the event. Right: The linear Hawkes process can be
generated as a cluster process where each event may spark future child events, indicated
here with line segments. These parent-child relations are unobserved. In the cluster with
labelled events (a, b, c, d), event b is in the first generation from event a while event d is
in the third generation from event a. We say that b is a child of a (direct descendant).

occur simultaneously in the multivariate point process. A linear Hawkes process can be defined by
imposing constraints on the conditional intensities, λit. These are stochastic processes and satisfy

λit = lim
h↓0

1

h
P (N i

t+h −N i
t = 1 | Ft)

where Ft represent the history of the process until time point t. A multivariate linear Hawkes
process is a point process such that

λjt = µj +
n∑
i=1

∫ t

−∞
φji(t− s)dN i

s

for a positive constant µj and nonnegative functions φji which are zero outside (0,∞). We define
Φ to be the n × n matrix such that Φji =

∫∞
−∞ φji(s)ds. See Figure 2 for an illustration of data

observed from a linear Hawkes process. When A is a square matrix, we let ρ(A) denote its spectral
radius, that is, the largest absolute value of its eigenvalues. We assume that ρ(Φ) < 1 in which case
we can assume the linear Hawkes process to have stationary increments (Jovanović et al., 2015).

We define the integrated covariance in this setting,

Cijdt =

∫ ∞
−∞

E(dN i
tdN

j
t+s)− E(dN i

t )E(dN j
t+s)ds. (3)

We also define Λidt = E(dN i
t ) and let Θ denote the diagonal matrix such that Θii = Λi. It holds

that C = (I − Φ)−1Θ(I − Φ)−1 . This is the same equation as in the VAR(1)-case in Section 2,
even though interpretations of the parameter matrices Φ and Θ differs.
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3.1.1. CLUSTER INTERPRETATION

Above we introduced the linear Hawkes process as a point process with conditional intensities of
a certain type. It is, however, possible to give an equivalent definition using the so-called cluster
representation (Jovanović et al., 2015). We will give a very short description here. For each i ∈ V , a
set of generation-0 events are generated from a homogeneous Poisson process with rate µi. Each of
these events create a Hawkes cluster which is generated in the following way. From an generation-n
event at time s of type i (coordinate process i), generation-(n + 1) events of type j are generated
from an inhomogenous Poisson process started at s with rate φji(t− s), t > s. This construction is
repeated. The superposition of all clusters form a linear Hawkes process. Note that only event types
and time points are observed while generation and parent-child relations of an event are unknown
when observing data from a linear Hawkes process.

The cluster interpretation also provides a straightforward interpretation of the entries of Φ. The
entry Φji is the expected number of direct j-children from an i-event. In general, (Φk)ji is the
expected number of j-events from an i-event in the k’th generation from the i-event. We define
R = (I − Φ)−1 =

∑∞
k=0 Φk. Rji is the total number of j-descendants on a cluster rooted at an

i-event. Note that R is well-defined and that the infinite sum converges due to the assumption on
the spectral radius of Φ (Jovanović et al., 2015). See Figure 2 for an example of direct/indirect
descendant events.

3.2. Time Series

Let Xt = (X1
t , . . . , X

n
t )T be a multivariate time series in discrete time, t ∈ Z. We say that Xt is a

VAR(p)-process if

Xt =

p∑
i=1

ΦiXt−i + εt (4)

where the ε-process is mean-zero and stationary, εt and εs are uncorrelated for s 6= t, andE(εtε
T
t ) =

Θ. Define Φ(z) = I − Φ1z − . . . − Φpz
p. We assume that det(Φ(z)) 6= 0 for all z ∈ C such that

|z| ≤ 1. This means that there exists a unique stationary solution to the VAR(p)-equation (Brock-
well and Davis, 2009, Theorem 11.3.1) and we assume throughout that we observe a stationary time
series. We use the notation Φ =

∑p
i=1 Φi. The above assumption on Φ(z) implies that I − Φ is

invertible. The entries of the matrix (I − Φ)−1 are sometimes called long-run effects (Lütkepohl,
2005). We also assume that I −ΦAA is invertible for all A ⊆ V . This holds, for instance, when the
entries of Φ are nonnegative and ρ(Φ) < 1.

We define again the integrated covariance in this model class

C =

∞∑
i=−∞

E(XtX
T
t+i)− E(Xt)E(Xt+i)

T .

C is well-defined since the sum converges (Brockwell and Davis, 2009, p. 420). Brockwell and
Davis (2009) (Section 11.2) discuss estimation of the terms E

(
XtX

T
t+i

)
. The matrix C is indepen-

dent of t due to stationarity. One should also note that the matrix C equals 2π times the spectral
density of Xt at 0.
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We saw in Section 2 that the integrated covariance equation holds for the VAR(1)-processes and
we can extend this result for VAR(p)-processes. First, we rewrite a VAR(p)-process as a VAR(1)-
process, Y , with n× p coordinate processes,

Yt = ΦY Yt−1 + εYt =


Φ1 Φ2 . . . Φp−1 Φp

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

Yt−1 +


εt
0
0
...
0


The VAR(1)-computations from above still hold which means that the integrated covariance of Y
can be written as

CY = (I − ΦY )−1ΘY (I − ΦY )−T .

We can use Schur complements and the structure of (I − ΦY ) to see that ((I − ΦY )−1)1:n,1:n =
(I − Φ)−1 where Φ =

∑p
i=1 Φi. From the sparsity of ΘY it follows that

C = (CY )1:n,1:n = (I − Φ)−1Θ(I − Φ)−T .

We see that this is the same formula as in the VAR(1) case, only Φ is now the sum of the direct
effects for each lag i = 1, . . . , p. Again, the above equation is also implied by textbook results on
time series (Brockwell and Davis, 2009, p. 420).

We note that Φ in the VAR(p)-case may have negative entries which is different from the linear
Hawkes case. This means that some results that apply in the linear Hawkes setting do not hold in
VAR(p)-time series, e.g., in relation to marginalization (Mogensen, 2022; Hyttinen et al., 2012).

3.3. Normalized parameters

The entries of the parameter matrix Φ have an intuitive interpretation in both model classes. How-
ever, in general we will not be able to identify these parameters with the methods in this paper, see
Example 10. Instead, we will aim to identify the entries of the normalized parameter matrix. We use
In to denote the identity matrix of dimension n and Ib to denote the identity matrix of dimension
|B| for a finite set B.

Definition 3 (Normalized parameters) Consider a pair of matrices (Φ,Θ) that solve the inte-
grated covariance equation. We say that they are normalized if Φii = 0 for all i.

Say we consider any pair (Φ,Θ) and wish to normalize it. We define D to be the diagonal
matrix such that Dii = (1 − Φii)

−1. Note that Φii 6= 1 due to the assumptions on Φ (Subsections
3.1 and 3.2). Then D is invertible and

C = (In − Φ)−1Θ(In − Φ)−T = (D(In − Φ))−1DΘD(D(In − Φ))−T

= (In − Φ̄)−1Θ̄(In − Φ̄)−T
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We see that (Φ̄)ji = Φji/(1 − Φjj) and that Φ̄ has zeros on the diagonal and therefore (Φ̄, Θ̄)
is normalized. If ρ(Φ) < 1 and the entries of Φ are nonnegative, then this will also be the case
for Φ̄ (Mogensen, 2022). This means that the normalized parameters are also within the Hawkes
parameter space.

The interpretation of the normalized parameters depend on the model class. In the linear Hawkes
process, Φ̄ji is the expected number of j events on a cluster rooted at an i event counting only
subtrees of the form i− j− j− . . .− j for any number of j events. This is thus the expected number
of direct j events from an injected i event when also counting subsequent ‘self-events’ j − j. In
the time series case, we see that (Φjj)

kΦji is the partial causal effect corresponding to the path
Xi
t → Xj

t+1 → Xj
t+2 → . . . → Xj

t+k+1. We have Φji/(1 − Φjj) =
∑∞

k=0(Φjj)
kΦji and the

normalized parameter is therefore the sum of the partial effects (Tian, 2004) along all paths of the
type Xi

t → Xj
t+1 → Xj

t+2 → . . . → Xj
t+k+1 and a measure of the causal influence of the variable

Xi
t on the entire future of process j, counting the direct effect as well as subsequent self-effects. In

both cases, the normalized parameters are seen to represent an easily interpretable causal quantity.
We will also use quantities of the type (Ib − ΦBB)−1ΦBA which is a multivariate version of

the above. The interpretation generalizes in a straightforward manner to this case. We see that
Φi
BBΦBA are the partial effects (Tian, 2004) from XA

t to XB
t+i+1 corresponding to paths A →

B → B → . . .→ B. This means that (I −ΦBB)−1ΦBA =
∑∞

i=0 Φi
BBΦBA is an aggregate causal

effect from XA
t to {XB

t+j}j≥1 taking only paths of the type A→ B → B → . . .→ B into account.
In this sense, it is a direct effect of A at time t on the entire future B-process counting the direct
effect XA

t → XB
t+1 and subsequent self-effects within B. Therefore, this is a natural quantification

of the effect of subprocess A on subprocess B when taking a stochastic process point of view.
Example 10 in Appendix B shows that from a normalized pair, (Φ,Θ), every diagonal matrix,

Dii, such that Dii 6= 1, provides us with a different pair (Φ̄, Θ̄) solving the same integrated co-
variance equation as the original pair. If ρ(Φ) < 1 and the entries are nonnegative and we let
0 < Dii < 1, then the same holds for Φ̄. This means that in both the time series case and the linear
Hawkes case we may find infinitely many pairs (Φ̄, Θ̄) that solve the equation. This needs a short
argument in the linear Hawkes case to ensure that ρ(Φ̄) < 1. In the time series case, we need to
argue that I − Φ̄BB is also invertible. These arguments are provided in Example 10 in Appendix B.
Hyttinen et al. (2012) provide similar arguments in the context of cyclic linear structural equation
models.

3.4. Graphical representation

One may use graphs to represent assumptions that are sufficient for IV analysis. These graphs are
defined for linear Hawkes models and VAR(p)-models below.

Definition 4 (Causal graph) Let G be a directed graph on nodes V and with edge set E. In the
linear Hawkes case, we say that G is the causal graph of the process if i → j is in E, i 6= j, if and
only if Φji 6= 0. In the VAR(p) model, we say that G is the causal graph of the process if i→ j is in
E, i 6= j, if and only if there exists k such that (Φk)ji 6= 0.

Note that the causal graph does not contain loops, that is, edges i → i. When identifying
normalized parameters, loops are inconsequential as the normalization removes self-effects and
adjusts the other parameters to retain the integrated covariance.
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We say that a process is exogenous if it has no parents in the causal graph. We say that a subset
of processes, I ⊆ V , are exogenous if there are no α /∈ I and β ∈ I such that α → β in the causal
graph. Note that there could be edges between processes in an exogeneous set, I , only not from
processes V \ I and into I .

4. Instrumental Processes

The exact statements and the proofs of the IV results are different between the two model classes
when we allow for a more general confounding in the time series case. For this reason, we first
describe the results for a linear Hawkes process and a VAR(p)-process as these are completely
analogous. However, the interpretation of the parameters differ as seen in Section 3. We then
describe how to generalize this in the time series case. In this section, process refers to either a
VAR(p)-process or a linear Hawkes process.

This section uses the algebraic equation in (2) to define instrumental processes that allow
us to identify normalized causal parameters (see Definition 3). Mogensen (2022) notes that the
parametrization of the integrated covariance is similar to the parametrization of the covariance of a
linear structural equation model for which there are several identification results, see, e.g., Foygel
et al. (2012); Chen (2016); Weihs et al. (2018). We will not use this connection directly and there-
fore we refer to that paper for a detailed explanation. One should note that identification results
from linear SEMs could be used to obtain some of the results of this paper. However, we take a
more direct approach which is closer to other IV work. Furthermore, this approach also makes
the needed assumptions explicit whereas identification results are often only generic, that is, hold
outside a measure-zero set of parameters.

Even though the results in this section are similar in spirit to other IV work, we use the matrix
C directly, and not a set of random variables. C is easily seen to be similar to a covariance matrix,
but it is not the covariance of a set of observed random variables.

We give first a univariate definition of an instrumental process which leads to an identification
result. Then we define a multivariate instrumental process and state the corresponding identification
result. The univariate definition and result are naturally implied by the multivariate result. However,
we include them in order to present the simplest possible setting first.

We are now ready to define what we mean by an instrumental process. The symbol ι will
throughout the paper denote an instrumental process (instrumental for the effect from α to β). The
symbol I will denote an instrumental set (multiple instruments, instrumental for the effect from the
set A to the set B), that is, I, A,B ⊆ O ⊆ V where O is the set of observed processes. We assume
that I, A, and B are disjoint.

Definition 5 We say that ι is an instrumental process for α → β in the causal graph G if it is
exogenous, every directed path from ι to β includes the edge α→ β, and Cα,ι 6= 0.

Theorem 6 Let ι, α, β ∈ O and G = (V,E) is the causal graph, V = O ∪̇U . If ι is an instrumental
process for α→ β, then Φβα is identified from the observed integrated covariance.

Proof As ι is exogenous, we have thatCαι = RιιΘιιRαι andCβι = RιιΘιιRβι. From the definition
of an instrumental process, we have Cαι 6= 0 and there Rαι 6= 0. Therefore Rβι/Rαι is identified.
We have R = (In − Φ)−1 and from the sparsity of R and the fact that In = (In − Φ)R it follows
that Rβι = ΦβαRαι + ΦββRβι. Therefore Rβι/Rαι = Φβα/(1− Φββ).
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Figure 3: A: Instrumental process example. Process 4 is unobserved (indicated by the square).
Process 1 (ι) may serve as an instrumental process to estimate the normalized effect from
2 (α) to 3 (β). B: The graph in A is only one possible explanation. More generally, in
any graph for which B is the latent projection (Verma and Pearl, 1990; Richardson et al.,
2017) of the causal graph the same instrumental process technique as used in A would
work.

Example 7 (Instrumental process) In this example, we show that the classical IV graph also al-
lows an IV analysis in this setting. Say we have a four-dimensional linear Hawkes process such that
the causal graph is as shown in Figure 3A and process 4 is unobserved. Then 1 is an instrument for
the normalized effect from 2 to 3. Theorem 6 gives that

C3,2/C3,1

identifies this effect.

4.1. Multiple instruments

As in other instrumental variable frameworks, we may consider using multiple instruments in case
there are multiple processes that are instrumental for the same (collection of) effects.

Definition 8 We say that a set of processes, I , are an instrumental process for the effect from A to
B if I is exogenous, any directed path from I to B includes an edge in A → B, and CAI has full
row rank.

Theorem 9 (Multiple instruments (just identified)) Let I, A,B ⊆ O be disjoint and non-empty
sets such that I is an instrumental process for the effect from A and B and assume that |A| = |I|.
In this case, (Ib − ΦBB)−1ΦBA is identified.

Proof From exogeneity of I , it holds that CBI = RBIΛIIRII and CAI = RAIΛI,IRII . In
the Hawkes case, let µ be the n-vector such that the i’th entry equals µi (the constant from the
conditional intensity). Λ is a diagonal matrix such the diagonal equals Rµ = (

∑∞
k=0G

k)µ (Achab
et al., 2017) and therefore ΛII is invertible. In the time series case, it is invertible by assumption.
RII is invertible as I is exogeneous and RII = (Ii −GII)−1. If CAI is invertible, so is RAI (note
that they are square as |A| = |I|). In that case,

RBI(RAI)
−1 = CBI(CAI)

−1

and therefore RBI(RAI)−1 is identified. From the definition of R, we see that In = (In−Φ)R and
therefore R = In + ΦR. This means that

10
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RBI =
∑
A

ΦBARAI = ΦBARAI + ΦBBRBI .

The last equality comes from the sparsity of R. We obtain

RBIR
−1
AI = (Ib − ΦBB)−1ΦBA.

Note that RAI is invertible as noted as above. In the linear Hawkes case, it holds that ρ(ΦBB) ≤
ρ(Φ) < 1 (Horn and Johnson, 1985, Corollary 8.1.20) so I − ΦBB is also invertible.

Figure 4 gives an example of a graphical structure with a multivariate instrumental process.

4.2. Overidentification

Consider instead the case where |A| < |I|, that is, overidentification. In this case, CAI is not
invertible. Let C−AI be a right inverse, that is, C−AI is an |I| × |A| matrix such that CAIC−AI = Ia.
Such a matrix exists as CAI has full row rank by assumption. Note that from this assumption it also
follows that RAI has full row rank as rank(AB) ≤ rank(A) for matrices A and B. We see that
R−AI = ΛIIRIIC

−
AI is a right-inverse of RAI . Then

RBIR
−
AI = CBIC

−
AI

The rest of the proof from above holds also in this case, showing that any choice of right-inverse of
CAI leads to identification of the normalized parameters. Note that choosing a specific right-inverse
of CAI specifies a choice of right-inverse of RAI as well – this specific right-inverse is then used
throughout the proof.

When W is a positive definite weight matrix then CAIWCTAI is invertible using the fact that
CAI has full rank. We see that the matrix WCTAI(CAIWCTAI)

−1 is a right-inverse of CAI . This
motivates using

CBIWCTAI(CAIWCTAI)
−1

as an estimate in the overidentified setting by plugging in estimated entries of C. See also Thams
et al. (2022) and Hall (2005).

5. Confounding in time series

We show that the above methods still apply under more general confounding in time series. In this
section, we consider the case of a VAR(1)-like model, with more general confounding. The same
procedure works in VAR(p)-models with more general confounding (Appendix A).

We assume

XB
t = ΦBAX

A
t−1 + ΦBBX

B
t−1 + gB(. . . , XU

t−2, X
U
t−1, ε

B
t )

11
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1

2 3

4 5

6A

I A B

U
B

Figure 4: A: Multivariate instrumental process example. Process 6 is unobserved (indicated by the
square). Processes 1 and 2 (I) may serve as an instrumental set to estimate the normalized
effect from 3 and 4 (A) to 5 (B). B: This graph is a simplified version of A. We collapse
processes 1 and 2 into a single node and processes 3 and 4 into another node, defining
sets I = {1, 2}, A = {3, 4}, B = {5}, U = {6} where U is unobserved. For X,Y ∈
{I, A,B,H}, we include edges X → Y if and only if x → y for some x ∈ X and
y ∈ Y . This recovers the ‘univariate’ IV structure from Figure 1B. Thams et al. (2022)
use this graphical representation as well as the full time graphs as described below Figure
1.

such that εt = (εIt , ε
A
t , ε

B
t ) are independent random variables and also independent of XU . These

assumptions correspond to more flexible confounding than above. We also assume that XI
t is in-

dependent of U and εB for all t and that (I − ΦBB) is invertible. Assume that XI
t , X

A
t , X

B
t are

mean-zero. We see that

X−t =
∞∑
k=0

Φk(Gt−k + ε−t−k)

whereX−t = (XI
t , X

A
t , X

B
t )T andGt = (0, gAt , g

B
t ). ComputingE(X−t+iX

I
t ) we see that this is the

same as a VAR(1)-model with the corresponding parameters. It follows that
∑∞

i=−∞E(X−t+iX
I
t )

converges. In the VAR(p)-case, we can re-write is as a VAR(1)-model as in Subsection 3.2 and
apply the same argument. We may write

E
(
XB
t+i(X

I
t )T
)

= E
(

(ΦBAX
A
t+i−1 + ΦBBX

B
t+i−1 + gB(. . . , XU

t+i−2, X
U
t+i−1, ε

B
t ))(XI

t )T
)

= ΦBAE
(
XA
t+i−1(X

I
t )T
)

+ ΦBBE
(
XB
t+i−1(X

I
t )T
)
.

We sum over i in the above expression,

∞∑
i=−∞

E
(
XB
t+i(X

I
t )T
)

=
∞∑

i=−∞
ΦBAE

(
XA
t+i−1(X

I
t )T
)

+
∞∑

i=−∞
ΦBBE

(
XB
t+i−1(X

I
t )T
)

CBI = ΦBACAI + ΦBBCBI

and isolating CBI we obtain

12
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CBI = (I − ΦBB)−1ΦBACAI

If CAI is has full row rank this gives identification of the matrix (I − ΦBB)−1ΦBA.

6. Estimation

In order to use the instrumental process framework above, one can estimate the relevant entries
of the integrated covariance matrix and then plug in the estimated covariances to obtain parameter
estimates. Achab et al. (2017) describe how to estimate cumulants of linear Hawkes process. We
sketch their approach below. We assume that we observe a linear Hawkes process over the interval
[0, T ] and that there exists H > 0 such that restricting the integration in Equation (3) to [−H,H]
introduces only a negligible error. As pointed out by Achab et al. (2017), this is reasonable if the
support of φji is small compared to H and the spectral radius of Φ is sufficiently small. Given
a realization of a stationary linear Hawkes process on [0, T ] let pi = {ti1, . . . , timi

} ⊂ [0, T ] be
the observed event times of process i. The following are estimators of the first- and second-order
cumulants,

Λ̂i =
1

T

∑
τ∈pi

1

Ĉij =
1

T

mi∑
k=1

(
N j

tik+H
−N j

tik−H
− 2HΛ̂j

)
In the above, N i

t refers to the observed counting process corresponding to process i, that is,
N i
t = 0 for t < 0 and in general N i

t =
∑mi

k=1 1tik≤t
. As noted by Achab et al. (2017), there is

a bias in the estimation of the integrated covariance, however, it is found to be negligible. Achab
et al. (2017) (Theorem 2.1 and Remark 1) show asymptotic consistency assuming that HT → ∞
and H2

T /T → 0 where HT is the value of the parameter H used when observing the process on the
interval [0, T ].

To estimate the matrix C in the time series case, one may use the relation to the spectral den-
sity of the time series, see, e.g., Brillinger (2001). One may also use the connection to long-run
covariance to obtain consistent estimation of C, see, e.g., Andrews (1991).

7. Conclusion

The instrumental variable methods in this paper provide a moment equation for time series models
which avoids using a conditional moment equation as in Thams et al. (2022). On the other hand,
they involve an integral or an infinite sum which needs to be estimated when applying the method.
One should also note that our estimands are slightly different than those of Thams et al. (2022). As
shown the estimands in this paper do have a simple causal interpretation, however.

The integrated covariance approach also allows a unified treatment of IV methods in time series
(discrete-time) and continuous-time processes as illustrated by the application to the continuous-
time linear Hawkes processes. It is clearly of interest to extend this framework to more general
classes of continuous-time processes. Finally, one should also note that the parametrization of the

13



MOGENSEN

integrated covariance can be used to obtain other identification results than the instrumental variable
results in this paper.
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Appendix A. VAR(p) and general confounding

The reasoning from Section 5 translates to this more complex model with only small adjustments.

E(XB
t+i(X

I
t )T ) =

E

∑
j

(Φj)BAX
A
t+i−j +

∑
j

(Φj)BBX
B
t+i−j + gB(. . . , XU

t+i−2, X
U
t+i−1, ε

U
t+i)

 (XI
t )T


We sum over i,

∞∑
i=−∞

E(XB
t+i(X

I
t )T ) =

∑
j

(Φj)BA

∞∑
i=−∞

E(XA
t+i−j(X

I
t )T )

+
∑
j

(Φj)BB

∞∑
i=−∞

E(XB
t+i−j(X

I
t )T )

=
∑
j

(Φj)BA

∞∑
i=−∞

E(XA
t+i(X

I
t )T )

+
∑
j

(Φj)BB

∞∑
i=−∞

E(XB
t+i(X

I
t )T ).

From this it follows that CBI = (I − ΦBB)−1ΦBACAI .

Appendix B. Normalization

Example 10 Consider a representation such that Φ is normalized (i.e., has zeros on the diagonal)

C = (I − Φ)−1Θ(I − Φ)−T .

For any diagonal matrix such that Dii 6= 1 for all i,

C = (D(I − Φ))−1DΘD(D(I − Φ))−T = (I − Φ̄)−1Θ̄((I − Φ̄))−T .

If 0 < Dii < 1 and ρ(Φ) < 1, we have that ρ(Φ̄) < 1. To see this note that Φ̄ = I − D + DΦ.
This is a nonnegative matrix and let λ = ρ(Φ̄). Then a nonnegative (entrywise) x (and nonzero)
can be chosen such that Φ̄x = λx (Horn and Johnson, 1985, Theorem 8.3.1). Φ and x have
nonnegative entries and x is nonzero therefore Φx ≥ x (the inequalities are to be read entrywise)
implies that ρ(Φ) ≥ 1 (Horn and Johnson, 1985, Theorem 8.3.2) so (Φx)i < xi for some i. We have
λx = (I−D+DΦ)x and therefore (λx)i < xi so λ < 1. We see thatDΘD is positive definite. This
shows that we cannot identify unnormalized direct effects from the integrated covariance matrix as
every nonzero entry of Φ̄ is different from the corresponding entry of Φ (note the diagonal of Φ̄ is
nonzero),

Φ̄ii = 1−Dii +
∑
k

DikΦki = 1−Dii > 0
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and for i 6= j,

Φ̄ij =
∑
k

DikΦkj = DiiΦij < Φij

when Φij 6= 0.
For the time series case, note also that

Φ̄BB = Ib −DBB + (DΦ) = Ib −DBB +DBBΦBB

and when x is a vector such that x = Φ̄BBx then

x = Φ̄BBx = (Ib −DBB +DBBΦBB)x

This implies DBBx = DBBΦBBx and x = ΦBBx so 1 is an eigenvalue of ΦBB and therefore
Ib − ΦBB is not invertible which is a contradiction. Therefore 1 is also not an eigenvalue of Φ̄BB

and it follows that Ib − ΦBB is invertible.
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