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Abstract

Classical graphical modeling of multivariate random vectors uses graphs to encode condi-
tional independence. In graphical modeling of multivariate stochastic processes, graphs may
encode so-called local independence analogously. If some coordinate processes of the multivari-
ate stochastic process are unobserved, the local independence graph of the observed coordinate
processes is a directed mixed graph (DMG). Two DMGs may encode the same local indepen-
dences in which case we say that they are Markov equivalent.

Markov equivalence is a central notion in graphical modeling. We show that deciding
Markov equivalence of DMGs is coNP-complete, even under a sparsity assumption. As a
remedy, we introduce a collection of equivalence relations on DMGs that are all less granular
than Markov equivalence and we say that they are weak equivalence relations. This leads to
feasible algorithms for naturally occurring computational problems related to weak equivalence
of DMGs. The equivalence classes of a weak equivalence relation have attractive properties. In
particular, each equivalence class has a greatest element which leads to a concise representation
of an equivalence class. Moreover, these equivalence relations define a hierarchy of granularity in
the graphical modeling which leads to simple and interpretable connections between equivalence
relations corresponding to different levels of granularity.

1 Introduction

The distribution of a multivariate random vector, (Xα)α∈V , induces an independence model, I,
which is simply the collection of triples, (A,B,C), such that XA and XB are conditionally in-
dependent given XC . Graphs are often used as convenient representations of such independence
models (Lauritzen, 1996; Maathuis et al., 2019). The graphical theory reflects the fact that condi-
tional independence is symmetric in A and B, i.e., (A,B,C) ∈ I if and only if (B,A,C) ∈ I. In
graphical modeling of multivariate stochastic processes, it is useful to apply a notion of independence
that distinguishes between past and present and for this purpose several authors have used local
independence, analogously to how conditional independence is used in classical graphical modeling.
However, local independence is not symmetric in the above sense and its graphical representation
therefore requires a specialized framework. Local independence was first introduced by Schweder
(1970) in composable Markov processes and later studied by Aalen (1987) in a broader class of
stochastic processes. Didelez (2000, 2008) described graphical modeling of marked point processes
based on local independence and Mogensen et al. (2018) extended this theory to Itô processes.

Graphs are said to be Markov equivalent if they represent the same independences, i.e., if they
are indistinguishable when observing only the induced independences. Several characterizations of
Markov equivalence are available in different classes of graphs representing classical conditional in-
dependence (Frydenberg, 1990; Verma and Pearl, 1990b; Spirtes and Verma, 1992; Andersson et al.,
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1997a,b; Richardson, 1997; Andersson et al., 2001; Zhao et al., 2005; Zhang, 2007; Ali et al., 2009).
Mogensen and Hansen (2020) used directed mixed graphs as representations of local independences
in partially observed stochastic processes and they characterized Markov equivalence in this class
of graphs by proving that each equivalence class contains a greatest element. Their equivalence
result also provided a simple approach to visualizing and understanding an entire equivalence class.
Mogensen and Hansen (2022) characterized Markov equivalence of directed correlation graphs repre-
senting local independence in the presence of correlated noise processes. Recent work studied local
independence testing in point processes (Thams and Hansen, 2021) and Christgau et al. (2022)
described nonparametric tests of local independence. It is worth noting that local independence
is a continuous-time version of discrete-time Granger causality which has been used in graphical
models of time series (Eichler and Didelez, 2007, 2010; Eichler, 2012, 2013). The graphical theory
of directed mixed graphs and the results in this paper may be applied in both continuous-time and
discrete-time stochastic processes (Mogensen and Hansen, 2020, supplementary material).

In graphs representing classical conditional independence, several characterizations of Markov
equivalence lead to polynomial-time algorithms for deciding Markov equivalence (e.g., Richardson,
1997; Ali et al., 2009). In the local independence framework, Mogensen and Hansen (2022) proved
that deciding Markov equivalence of two directed correlation graphs is coNP-complete which means
that we should not expect to find a polynomial-time algorithm in this case. In this paper, we show
that deciding Markov equivalence of directed mixed graphs is also coNP-complete. We further
show that assuming sparsity of the directed mixed graphs does not generally remedy this. Our
results imply that several computational problems that occur naturally when using directed mixed
graphs are also computationally hard. For this reason, Markov equivalence in partially observed
local independence graphs may not always be a practical notion. Instead, we introduce a class of
weak equivalence relations between local independence graphs. We characterize the corresponding
equivalence classes and show that they too contain a greatest element. Mogensen and Hansen (2020)
argued that the existence of a greatest element leads to a straightforward Markov equivalence theory.
We extend this theory to the more general weak equivalences studied in this paper. This allows a
simple representation of weak equivalence classes. A subset of the weak equivalence relations may
be understood as creating a hierarchy of equivalence relations in which a parameter, k, creates a
trade-off between the size of the equivalence classes and the computational complexity, leading to
a graphical theory which is both useful and practical. This hierarchy also illustrates interpretable
connections between equivalence classes across different values of k.

The paper is structured in the following way. In Section 2, we introduce necessary terminology
and notation. We also describe global Markov properties that connect so-called µ-separation in
graphs to local independence and provide justification for using graphs as representations of local
independence. Moreover, we give an example to illustrate the framework and purpose of the paper.
In Section 3, we prove that deciding Markov equivalence of directed mixed graphs is computationally
hard, even under sparsity restrictions, and we discuss the implications of this result. In Section 4, we
introduce the notion of weak equivalence of graphs. We describe its properties and compare it with
Markov equivalence. Section 5 proves that, under a regularity condition, every weak equivalence
class has a greatest element. Using the main result from the previous section, Section 6 first
describes a graph which concisely represents an entire equivalence class. It then describes a hierarchy
of certain weak equivalence classes and how they represent different levels of granularity in their
description of the underlying graphs. Section 7 discusses algorithmic aspects of weak equivalence,
and in Section 8 we briefly outline how results from the previous sections relate to graphical structure
learning. Section 9 provides a discussion of the results.
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2 Local independence and graphs

The interest in µ-separation arises from its connection to local independence as formalized through
various global Markov properties. We start by defining local independence following the exposition
in Christgau et al. (2022). We will give the definition for counting processes, though, it can be
extended to other classes of stochastic processes (Didelez, 2008; Mogensen et al., 2018; Mogensen
and Hansen, 2022).

We consider a multivariate counting processes, Nt = (N1
t , . . . , N

n
t ), on a probability space,

(Ω,F, P ), and we assume that Nt is observed over some interval [0, T ]. We let V denote the set
{1, 2, . . . , n}. We use FDt to denote the right-continuous and complete filtration generated by
ND
t = (Nα

t : α ∈ D). One can think of FDt as consisting of the information in the coordinate

processes in D ⊆ V up until time point t. For β ∈ V and C ⊆ V , we assume that Nβ
t has a

FCt -intensity, λβ,Ct . The stochastic process λβ,Ct is FCt -predictable and Nβ
t −

∫ t
0
λβ,Cs ds is a local

FCt -martingale.

Definition 2.1 (Local independence). Let α, β ∈ V and let C ⊆ V . We say that Nβ
t is locally

independent of Nα
t given NC

t (or simply, that β is locally independent of α given C) if the local

FCt -martingale as defined above is also a local FC∪{α}t -martingale. For A,B,C ⊆ V , we say that
B is locally independent of A given C if β is locally independent of α given C for all α ∈ A and
β ∈ B, and we denote this by A 6→ B | C.

Christgau et al. (2022) use the term conditional local independence instead of local independence
which highlights the fact that Definition 2.1 is analogous to classical conditional independence of
random variables. Intuitively, when β is locally independent of α given C, observation of the α-
process over the interval [0, t] does not provide additional information other than that contained in
FCt− when trying to predict if there will be an event in process β in the interval [t, t+ dt).

Local independence was first used by Schweder (1970) in composable Markov processes and
later studied by Aalen (1987). Didelez (2000, 2008) described graphical modeling based on local
independence. Other work on local independence Markov properties go into more detail (Didelez,
2000, 2008; Mogensen et al., 2018; Mogensen and Hansen, 2022).

Definition 2.2 (Local independence graph). We consider a multivariate counting process, Nt =
(N1

t , . . . , N
n
t ), as above, V = {1, . . . , n}. Its local independence graph is the directed graph, D, on

nodes V such that

α 6→ β in D ⇔ α 6→ β | V \ {α}

for α, β ∈ V where α 6→ β indicates the absence of the directed edge from α to β.

The statement {α} 6→ {β} | V \{α} denotes that β is locally independent of α given V \{α}, and
above we have simply written the singletons {α} and {β} as α and β, respectively. The implication
from left to right in Definition 2.2 is known as the pairwise Markov property. When this property
holds, we see that the absence of an edge implies a local independence. The global Markov property
allows one to read off more general local independences from a local independence graph using δ- or
µ-separation (Definition 2.5). This is similar to other classes of graphical models (Maathuis et al.,
2019). Several results state conditions for the equivalence of pairwise and global Markov properties
(Didelez, 2008; Mogensen et al., 2018).
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Local independence is a continuous-time analogue of Granger causality in discrete-time stochas-
tic processes. The results of this paper also applies to Granger-causal graphs, see, e.g., the supple-
mentary material of Mogensen and Hansen (2020) and Eichler (2007).

2.1 Alarm network

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

5 6 8

10 11 12

1 2 3 4

5 6 8

10 11 12

Figure 1: Graphs from the example in Subsection 2.1. Loops are omitted from the visualization.
Left: underlying local independence graph (directed graph, D,) representing the alarm network.
Middle: latent projection, G, of the graph D when processes 7 and 9 are unobserved. The graph
G is a directed mixed graph and it represents the partially observed alarm network. The bidirected
edges, e.g., 6 ↔ 12, represent correlation mediated by unobserved nodes, e.g., 6 ← 9 → 12.
Unobserved directed paths may create new edges, e.g., 5→ 6 in G corresponds to 5→ 9→ 6 in D.
Right: the directed mixed equivalence graph of the Markov equivalence class containing G.

We describe an example application based on modeling how alarms propagate through a complex
industrial system. Example data is in Figure 2. In this industrial system, a number of process vari-
ables (e.g., temperatures and pressures) are measured repeatedly. Each process variable corresponds
to an alarm process, and if a measured process is outside the normal range of operations an event
occurs in the corresponding alarm process. The stochastic system is described by a 12-dimensional
counting process, NV

t ,

V = {A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,H,E},

observed over the interval [0, 1]. The coordinate processes in V \ {E} are alarm processes. Process
E represents exogenous events that feed into the system, e.g., changes in operating conditions, and
this process is unobserved. Process H is an alarm process, but unavailable for some reason, and the
observed processes are those in V \ {E,H}. We assume that D is a local independence graph in
the sense of Definition 2.2. Under some regularity conditions, this implies that the global Markov
property is satisfied in this graph (Didelez, 2008) and therefore µ-separation (Definition 2.5) in the
graph implies local independence.

The graph G in Figure 1 (the latent projection of D, see Section C) represents the observable
local independences in the sense that for A,B,C ⊆ V \ {E,H} it holds that B is µ-separated
from A given C in D if and only if B is µ-separated from A given C in G. The underlying graph
of the full system, D, is a directed graph while the latent projection is a directed mixed graph.
In general, this larger class of graphs is needed to represent the local independences of partially
observed multivariate stochastic processes.
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Figure 2: Example data from the alarm network in Subsection 2.1. Each jump of a step function
corresponds to an event in the corresponding counting process. Under the global Markov property,
the local independence graph D in Figure 1 implies that A3 (B) is locally independent of A1 (A)
given {A2,A6} (C). The meaning of this is illustrated in the above plot. We are trying to predict if
there is an event in process A3 in the infinitesimal interval [t, t+ dt) (B, green), and we are asking
if the information in the past of process A1 (A, red) adds anything when accounting for the past
of processes {A2,A6} (C, blue).

Local independence asks the following question. If we are to predict if processes B will have
an event in the immediate future and we have the information in the past of processes C will the
information in the past of proesses A add anything? This is illustrated visually in Figure 2 with
A = {A1}, B = {A3}, and C = {A2,A6}. In this specific example, {A3} is µ-separated from {A1}
given {A2,A6} in G and under the global Markov property this implies that the corresponding local
independence holds. Therefore, the information in the past of process {A1} is superfluous when
already accounting for the information in the past of processes {A2,A6}.

Several directed mixed graphs may induce the same µ-separations which means that they repre-
sent the same local independences. In this case, we say that they are Markov equivalent. The graph
on the right in Figure 1 is the directed mixed equivalence graph of G. It represents the entire Markov
equivalence class by indicating if an edge is in every Markov equivalent graph (solid), in no Markov
equivalent graph (absent), or in only some Markov equivalent graphs (dashed). This is a useful
representation, but it may not be a practical one for all applications as it leads to computationally
hard problems. In this paper, we trade away some of the expressive power of Markov equivalence
to obtain a more feasible notion of equivalence and we show that weaker notions of equivalence
remain easily interpretable.

2.2 Graphs

A graph is a pair (V,E) where V is a finite node set and E is an edge set. The edge set E is a
disjoint union, E = Ed ∪̇Eb, where Ed is a set of ordered pairs, corresponding to directed edges,→,
and Eb is a set of unordered pairs, corresponding to bidirected edges,↔. We use α↔G β to denote
that there is a bidirected edge between α and β in the graph G, or just α↔ β when it is clear from
the context to which graph the statement refers, and we use α →G and α → β analogously. The
definition of the node set implies that we allow multiple edges between a pair of nodes, however,
the edges between two nodes α and β is always a subset of {α → β, α ← β, α ↔ β}. Moreover,
α ↔ β and β ↔ α are equivalent while α → β and α ← β are different edges. We emphasize that
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the edge α ↔ β is not shorthand for the two edges α → β and α ↔ β, and the meaning of the
bidirected edge is different from that of the two directed edges. This will be clear from subsequent
definitions.

We use α ∼ β to denote a generic edge of either type between α and β, and we say that
α and β are adjacent in G when there exists an edge between them, α ∼ β. When there are
multiple nodes on each side of the edge, α1, . . . , αk ∼ β1, . . . , βl, this means that αi ∼ βj for all
i = 1, . . . , k and j = 1, . . . , l. We separate such statements by semicolons, α1, . . . , αk ∼ β1, . . . , βl;
γ1, . . . , γr ∼ δ1, . . . , δs. We use α ∗→ β to mean that α → β or α ↔ β. We say that edges α → β
and α↔ β have a head at β, and that α→ β has a tail at α. If an edge e is between α and β and
α = β, we say that e is a loop.

We use V as a generic node set and let n denote the cardinality of V , n = |V |. The graphs
described above are directed mixed graphs as formalized in the next definition.

Definition 2.3 (Directed mixed graph (DMG)). We say that G = (V,E) is a directed mixed graph
if its edge set, E, consists of directed and bidirected edges.

We say that a DMG is a directed graph (DG) if it has no bidirected edges. A walk between γ1

and γl+1 is an alternating sequence of nodes, γ1, . . . , γl+1 and edges ∼1, . . . ,∼l

γ1 ∼1 γ2 ∼2 . . . ∼l γl+1

such that for each i = 1, . . . , l, ∼i is between γi and γi+1. Let ei denote the edge ∼i above. We
will sometimes write a walk as (γ1, e1, γ2, . . . , el, γl+1). A walk also specifies an orientation for each
edge as one can otherwise not distingush between α← α and α→ α. We say that γi, 1 < i < l+ 1,
is a collider if ∼i−1 and ∼i both have head at γi. Otherwise, we say that it is a noncollider. A
node may be repeated on a walk, γi = γj , i 6= j, and may therefore occur both as a collider and as
a noncollider on the same walk. Thus, the property of being a collider/noncollider pertains to the
specific instance of the node on the walk. We say that γ1 and γl+1 are endpoints of the walk. Note
that endpoints of a walk are neither colliders nor noncolliders. We say that a walk is nontrivial if
it has at least one edge. A walk on which no node is repeated is a path.

Let G = (V,E). When e is an edge we use G + e to denote the graph (V,E ∪ {e}), and we use
G − e to denote the graph (V,E \ {e}). We say that G is complete if it contains α → β; α ← β,
and α ↔ β for all α, β ∈ V , and we say that G is empty if E = ∅. We say that a walk between α
and β is directed from α to β if every edge on the walk is directed and points towards (the last)
β, α → . . . → β. We say that α is an ancestor of β in G if there exists a directed walk from α to
β, and we allow this walk to be trivial (no edges) meaning that a node is always an ancestor of
itself. We define anG(α), or simply an(α), to be the set of ancestors of α, and for C ⊆ V we define
anG(C) = ∪α∈CanG(α). Note that C ⊆ anG(C).

Definition 2.4 (µ-connecting walk). We say that a nontrivial walk in a DMG, G,

α ∼1 γ1 ∼2 . . . ∼l β

is µ-connecting from α to β given C if α /∈ C, the edge ∼l has a head at β, every collider is in
an(C) and no noncollider is in C.

The µ-connecting walks are used in the definition of µ-separation below which will help us
connect DMGs to local independence. Mogensen et al. (2018) and Mogensen and Hansen (2020)
defined µ-separation as an extension to δ-separation (Didelez, 2000, 2008). One can think of δ- and
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µ-separation as analogous to d- and m-separation in DAG-based graphical models (Pearl, 2009;
Richardson and Spirtes, 2002; Richardson, 2003).

Definition 2.5 (µ-separation). Let G = (V,E) and let A,B,C ⊆ V . We say that B is µ-separated
from A given C in G if there is no µ-connecting walk from any α ∈ A to any β ∈ B given C. We
write this as A ⊥µ B | C [G], or simply A ⊥µ B | C. We say that C is a conditioning set.

By definition, B is µ-separated from A given C if A ⊆ C. One should also note that µ-separation
is not symmetric in A and B in that A ⊥µ B | C [G] does not imply A ⊥µ B | C [G], and neither is
local independence. This lack of symmetry sets the graphical modeling of local independence apart
from the classical graphical modeling of conditional independence (Lauritzen, 1996). In contrast
to m-separation, µ-separation cannot be characterized using only paths (Mogensen and Hansen,
2020). It is, however, possible to obtain a characterization using only routes which are a finite
subset of all possible walks (see Definition D.1 in Appendix D or Mogensen and Hansen (2020)).
The next example illustrates the concept of µ-connecting walks and µ-separation in a DMG.

Example 2.6. We consider the DMG, G, in Figure 3. The walk 1↔ 2→ 3 is µ-connecting from
1 to 3 given ∅. It is not µ-connecting from 1 to 3 given {2} as 2 is a noncollider. On the walk
1 ↔ 2 ← 2 → 3 the node 2 is a collider in its first instance and a noncollider in its second. The
walk 3 → 2 ↔ 1 is µ-connecting from 3 to 1 given {2}, however, the reverse walk, 1 ↔ 2 ← 3 is
not µ-connecting from 1 to 3 given {2}.

We see that 3 is µ-separated from 1 given {2, 3} in G. On the other hand, 3 is not µ-separated
from 1 given {2} as the walk 1↔ 2← 3→ 3 is µ-connecting.

1 2 3

Figure 3: The graph G in Examples 2.6 and 2.8.

2.3 Independence models and Markov equivalence

For a fixed stochastic process, Xt = (X1
t , . . . , X

n
t )T , and a DMG, G = (V,E), both local indepen-

dence and µ-separation can be thought as ternary relations on a finite set P(V ) × P(V ) × P(V )
where V = {1, 2, . . . , n} and P(·) denotes power set. We use P to denote P(V ) × P(V ) × P(V ) =
{(A,B,C) : A,B,C ⊆ V } and we define an abstract independence model, I, to be a subset of P.
Thus, I is a collection of triples (A,B,C) such that A,B,C ⊆ V . We say that I is an independence
model over V . When A,B, or C are singletons, we will often omit the set notation and write, e.g.,
(α, β, C) instead of ({α}, {β}, C).

We use I(G) to denote the independence model induced by G, that is, the set of µ-separations
that are true in G, I(G) = {(A,B,C) ∈ P : A ⊥µ B | C [G]}. Similarly, an independence model can
be defined as the set of local independences that hold in the distribution of a multivariate stochastic
process. We say that an independence model, I, is graphical, if there exist a DMG, G, such that
I = I(G).

Definition 2.7 (Markov equivalence). Let G1 = (V,E1) and G2 = (V,E2) be DMGs. We say that
G1 and G2 are Markov equivalent if for all A,B,C ⊆ V it holds that B is µ-separated from A given
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C in G1 if and only if B is µ-separated from A given C in G1. Equivalently, G1 and G2 are Markov
equivalent if I(G1) = I(G2). We use [G1] to denote the Markov equivalence class of G1.

Example 2.8. We return to the graph, G, in Figure 3. By definition, its independence model,
I(G), consists of all triples (A,B,C) such that B is µ-separated from A given C in G. It is
enough to consider (A,B,C) such that A and B are singletons and A 6⊆ C as these characterize
I(G) (Proposition 4.11). We see that 3 is µ-separated from 1 given {2, 3}, and this is the only
µ-separation of this type in the graph.

2.3.1 Extremal elements of sets of DMGs

Let G = {G1 = (V,E1), . . . ,Gl = (V,El)} be a set of DMGs on a common node set, V . If Ei ⊆ Ej ,
we write Gi ⊆ Gj , and we say that Gi is a subgraph of Gj , and that Gj is a supergraph of Gi. We
write Gi ( Gj when Ei ⊆ Ej and Ei 6= Ej . The following definitions are common set-theoretic
notions when considering the set G with the partial order, ⊆.

Definition 2.9 (Maximal element, DMG). We say that G ∈ G is a maximal element of G if there
is no Ḡ ∈ G, Ḡ 6= G, such that G ⊆ Ḡ.

Definition 2.10 (Greatest element, DMG). We say that G ∈ G is a greatest element of G if Ḡ ⊆ G
for all Ḡ ∈ G.

When a greatest element exists, it is unique. It is also maximal, and it is the only maximal
element. In this paper, we are mostly concerned with maximal and greatest elements, however, we
also define minimal and least elements of sets of DMGs. We say that G ∈ G is a minimal element
of G if there is no Ḡ ∈ G, Ḡ 6= G, such that Ḡ ⊆ G. We say that G ∈ G is a least element of G if
G ⊆ Ḡ for all Ḡ ∈ G. The set G will most often be an equivalence class in our usage of the above
terms, and we sometimes simply say that G is a maximal/minimal/greatest/least element when the
equivalence class is understood from the context.

Example 2.11. If we consider the set of graphs G = {A,B,C,D} in Figure 4, we see that graph
D is the greatest element of G as every graph in G is a subgraph of D, and therefore D is also the
unique maximal element of G. The smaller set Ḡ = {A,B,C} does not have a greatest element
and graphs B and C are maximal elements of Ḡ.

2.3.2 Representation of Markov equivalence classes

We introduce a central result from Mogensen and Hansen (2020). They show that every Markov
equivalence class has a greatest element. Section 5 extends this theorem to weak equivalence
relations.

Theorem 2.12 (Greatest element of a Markov equivalence class, (Mogensen and Hansen, 2020)).
Let G be a DMG, and let [G] be its Markov equivalence class. There exists N ∈ [G] such that for all
Ḡ ∈ [G] the edge set of Ḡ is a subset of the edge set of N .

The next example illustrates the utility of this theorem.

Example 2.13. Graphs A-D in Figure 4 constitute a Markov equivalence class, [G] (for simplicity,
we assume that all loops are present, and do not consider Markov equivalent graphs obtained by
removing loops). Graph D is the greatest element of [G] in the sense that all Markov equivalent
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graphs are subgraphs of graph D. In other words, if a graph in the Markov equivalence class contains
the edge e, then e is also in the graph D. This means that we can represent the entire Markov
equivalence class using graph E. The edges are the same as in the greatest element. Edges are solid in
graph E if they are in every Markov equivalent graph and they are dashed if they are in some Markov
equivalent graphs, but not in others. Absent edges are not in any graph in the Markov equivalence
class. Therefore, graph E represents a summary of the information the Markov equivalence class
provides on each edge. Moreover, Theorem 2.12 implies that every Markov equivalence class contains
a greatest element, and therefore this is a general approach to representing and understanding
Markov equivalence classes (Mogensen and Hansen, 2020).

1 2

3 4

A

1 2

3 4

B

1 2

3 4

C

1 2

3 4

D

1 2

3 4

E

Figure 4: Graphs from Examples 2.11 and 2.13. All loops are present in the graphs but omitted
from the visualization.

3 Hardness of marginalized local independence graphs

In this section, we argue that certain computational problems in relation to DMGs and Markov
equivalence are hard. For this purpose, we give a very short introduction to the concepts from
complexity theory that we will need. A decision problem is in coNP if no-instances have certificates
which can be evaluated in polynomial time. For instance, if G1 and G2 are not Markov equivalent
(they are a no-instance when deciding Markov equivalence) a triple (A,B,C) such that B is µ-
separated from A given C in G1, but not in G2, may function as a certificate as one can check this
specific separation in both graphs and conclude that they are not Markov equivalent. A decision
problem is in P if it can be solved by a deterministic Turing machine in polynomial time. A decision
problem is coNP-hard if it is at least as hard as any problem in coNP, and it is coNP-complete if
it is coNP-hard and in coNP. It is generally believed that P 6= coNP in which case there are no
polynomial-time algorithm which can solve a coNP-hard problem. The complement of a decision
problem arises from interchanging yes and no. A decision problem is in coNP if and only if its
complement is in NP. We now introduce some decision problems relating to DMGs.

Decision problem 3.1 (Markov equivalence in DMGs). Let G1 = (V,E)1 and G2 = (V,E2) be
DMGs. Are G1 and G2 Markov equivalent?

The development in this paper is partly motivated by the fact that the above decision problem
is hard (Corollary 3.3). We can formulate a restricted version of the problem in which the pair of
graphs for which to decide Markov equivalence only differ by a single (bidirected or directed) edge,
as formalized in Decision problems A.1 (bidirected) and A.2 (directed). These problems are also
hard and we prove this in Theorem 3.2. Corollary 3.3 follows immediately from this theorem.
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Theorem 3.2. Let G be a DMG and let e denote an edge. Deciding Markov equivalence of G and
G + e is coNP-complete (Decision problems A.1 and A.2).

Corollary 3.3. Deciding Markov equivalence of DMGs is coNP-complete (Decision problem 3.1).

Decision problem A.1 has been proven to be coNP-complete (PhD thesis, Mogensen (2020b))
and this was used to obtain the result in Corollary 3.3. We will give a slightly different proof to
make the generalization to the proof in the sparse setting more transparent and to also prove that
Decision problem A.2 is coNP-complete. The graphs G, G1, and G2 used in the proof of Theorem
3.2 are clearly not sparse, that is, for the size of the node set going to infinity there are nodes
with unbounded connectivity (formal definitions of node connectivity are in Subsection 3.1 and
Section B). In the next section, we will show that the hardness results remain true under certain
sparsity assumptions. We include the proof of the non-sparse result in Theorem 3.2 to illustrate the
technique as the more general result can be proved using a similar approach, even if some additional
ideas are needed.

Mogensen and Hansen (2022) showed that deciding µ-separation Markov equivalence of so-called
directed correlation graphs (cDGs) is coNP-complete, though only in the non-sparse case. Their
proof of coNP-hardness uses a reduction from 3DNF tautology as does the proof of Theorem 3.2.
However, their proof is specific to cDGs as it uses a characterization of Markov equivalence which
holds in cDGs, but not in DMGs (Mogensen and Hansen, 2022). While a DMG represents the
local independences of a partially observed multivariate stochastic process, i.e., some coordinate
processes are unobserved, a cDG represents a multivariate stochastic process driven by correlated
noise. Mogensen and Hansen (2022) compared DMGs and cDGs further and showed that a Markov
equivalence class of cDGs need not have a greatest element.

Proof. We consider n Boolean variables, x1, . . . , xn, and a Boolean formula, H,

(z1
1 ∧ z1

2 ∧ z1
3) ∨ (z2

1 ∧ z2
2 ∧ z2

3) ∨ . . . ∨ (zN1 ∧ zN2 ∧ zN3 )

such that zki is a literal of a variable, that is, either xl (a positive literal) or ¬xl (a negative literal).
We assume H to be in 3DNF form (each conjunction has at most three literals). N is the number
of conjunctions in the formula and n is the number of variables. We define nj to be the number of
factors in the j’th conjunction. Deciding whether H is a tautology (evaluates to true for all inputs)
is known to be coNP-complete Garey and Johnson (1979) and we will use a reduction from this
problem to show coNP-hardness of Decision problems A.1 and A.2.

We construct three graphs, G = (V,E), G1 = (V,E1), and G2 = (V,E2) from H such that
G1 = G + eb and G2 = G + ed where eb is a bidirected edge and ed is a directed edge. We then show
that G and G1 are Markov equivalent if and only if H is a tautology and that G1 and G2 are Markov
equivalent if and only if H is a tautology.

First, we define the set V −.

V − = {γ, γ̄, δ, δ̄}
∪ {φki }i=1,...,nk,k=1,...,N

∪ {φ̄ki }i=1,...,nk,k=1,...,N

∪ {χi, λi}i=1,...,n.
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We define the node set V = {α, β, ε, φ} ∪ V − ∪ {νρβ , νρε }ρ∈V − and V is the node set of all three

graphs G = (V,E), G1 = (V,E1), and G2 = (V,E2). Note that each literal, zki , corresponds to two
nodes, φki and φ̄ki .

We now define the edge set E. We add γ → γ̄; γ ← γ̄ ; δ → δ̄ ; δ ← δ̄. For each node ρ ∈ V −,
we add edges ρ → νρε , ν

ρ
β and ρ ← νρε , ν

ρ
β . We also add edges ε ↔ νρε ; β ↔ νρβ . We add edges

νρε → νρβ and νρε → νρβ for each ρ ∈ V −. We also add all directed and bidirected loops, ρ ∼ ρ, for

all ρ ∈ V . We add edges α ↔ γ, γ̄; ε ↔ δ̄; β ↔ δ, and ε → β; ε ← β as well as φ ↔ ε, β. For
each k = 1, . . . , N , we add γ ↔ φk1 ↔ . . . ↔ φknk

↔ δ and γ̄ ↔ φ̄k1 ↔ . . . ↔ φ̄knk
↔ δ̄. We add

γ̄ ↔ χ1, λ1 and δ̄ ↔ χn, λn. For each i = 1, . . . , n− 1, we add χi, λi ↔ χi+1, λi+1. Finally, we add
for each l = 1, . . . , n a directed cycle containing χl as well as every φki and φ̄ki corresponding to a
positive literal of the variable xl, and we add a directed cycle containing λl as well as every φki and
φ̄ki corresponding to a negative literal of the variable xl. This defines the edge set E, G = (V,E).
We obtain G1 = (V,E1) from G by adding the edge ε↔ β, that is, E1 = E ∪{ε↔ β}. Note that ρ1

is an ancestor of ρ2 in G if and only if ρ1 is an ancestor of ρ2 in G1. We obtain G2 = (V,E2) from
G by adding the edge φ→ ε, E2 = E ∪ {φ→ ε}.

We will first argue that G and G1 are Markov equivalent if and only if H is a tautology. Assume
first that H is a tautology and consider a µ-connecting walk in G1,

ρ1 ∼ . . . ε↔ β . . . ∼ ρm
Using the fact that all loops are included, we can always find a µ-connecting walk such that the
edge ε↔ β occurs at most once and we assume that this is the case. We can assume that ρ1 only
occurs once on the walk. If ρ1 6= α, there is a µ-connecting walk from ρ1 to β with a head at β: If
ρ1 ∈ V −, or ρ1 = νρε for some ρ ∈ V −, either ρ1 → νρβ ↔ β or ρ1 ← νρβ ↔ β is connecting and can
be composed with the subwalk from β to ρm to obtain a connecting walk in G. If ρ1 = ε, β, φ or
ρ1 = νρβ for some ρ ∈ V −, then ρ1 ∗→ β is in G. Assume instead that ρ1 = α,

α ∼ . . . ε↔ β . . . ∼ ρm
and consider the subwalk from α to ε, ω1. If there is a noncollider on ω1, say ψ, then ψ /∈ C and
ψ ∈ an(C). We use this to argue that we can always find a walk from ψ to β such that when
concatenated with the subwalk from α to ψ we obtain a µ-connecting walk from α to β. If ψ ∈ V −,
we can find a connecting walk from α to β with a head at β by concatenating the subwalk from
α to ψ with ψ → νψβ ↔ β if νψβ ∈ C and ψ ← νψβ ↔ β if νψβ /∈ C. If ψ = νρε for some ρ, we can

concatenate with ψ → νρβ ↔ β or ψ ← νρβ ↔ β. If ψ = νρβ for some ρ, we can concatenate with
ψ ↔ β. If ψ = ε, then we can replace ε ↔ β with ε → β to obtain a connecting walk in G. If
ψ = β, we can concatenate with ψ → β. If ψ = φ, we can concatenate with ψ ↔ β. Finally, ψ = α
is not possible as ρ1 = α only occurs once on the original walk.

Assume now that ω1 is a collider walk. If it goes through a φ̄-segment, then the corresponding
φ-segment is open (note that γ and γ̄ are in a directed cycle and so are δ and δ̄). If it goes
through the χ-λ-segment, then for each l = 1, . . . , n either χl ∈ an(C) or λl ∈ an(C). Let xl = 1
if χl ∈ an(C) and xl = 0 otherwise. The formula H is a tautology and therefore it evaluates to
1 under this assignment of truth values. Thus, there exists k such that zki = 1 for i = 1, . . . , nk.
Assume first that zki is a positive literal corresponding to the variable xl. In this case, xl = 1 and
χl ∈ an(C), and therefore φki ∈ an(C). Assume instead that zki is a negative literal corresponding to
the variable xl. In this case, xl = 0 and χl /∈ an(C) which means that λl ∈ an(C) and φki ∈ an(C).

11



This means that the walk α ↔ γ ↔ φk1 ↔ . . . ↔ φknk
↔ δ ↔ β is open for some k = 1, . . . , N and

this gives us a µ-connecting walk from α to ρm in G also in this case.
If instead

ρ1 ∼ . . . β ↔ ε . . . ∼ ρm
then the same arguments hold.

On the other hand, say that H is not a tautology, and consider an assignment, A, of truth values
such that H evaluates to false. Define the set

C = an
(
{χi : xi = 1 in A} ∪ {λi : xi = 0 in A} ∪ {γ, δ, ε, β}

)
.

In G1, there is an open, bidirected walk from α to β through the χ-λ segment, and we see that β is
not µ-separated from α given C. On the other hand, consider a walk between α and β in G. The
first and last edges on a connecting walk from α to β given C must be bidirected and as C = an(C),
this means that the walk must be a collider walk to be µ-connecting from α to β given C, and it
must go through δ. If φki corresponds to a positive literal and it is open (i.e., in an(C)) then the
correspond variable is 1 in A and zki = 1. If it corresponds to a negative literal and it is open, then
the corresponding variable is 0 in A and zki = 1. This means that each φki segment must be closed
in at least one node as the assignment A evaluates to 0. Therefore, β is µ-separated from α given
C in G, and we conclude that G and G1 are Markov equivalent if and only if H is a tautology.

We now show that G1 and G2 are Markov equivalent. Take any µ-connecting walk in G1. Any
occurrence of ε ↔ β can be replaced by either β ↔ φ → ε or β ↔ φ ↔ ε, depending on whether
φ ∈ C. The resulting walk is present and connecting in G2. On the other hand, consider a µ-
connecting walk from ρ1 to ρm given C in G2. We start by removing all non-endpoint occurrences
of φ. Say

ρ1 ∼ . . . ∼ ρi ∼ φ→ ε ∼ . . . ∼ ρm.

If ρi = β, then ρi ↔ φ → ε can be replaced by ρi ↔ ε. If ρi = φ or if ρi = ε, we can remove the
cycle (ε = ρm we may need to concatenate with ε→ ε to obtain a µ-connecting walk after removing
a cycle). If instead

ρ1 ∼ . . . ∼ ρi ∼ ε← φ ∼ ρj ∼ . . . ∼ ρm
we do the same depending on ρj (if φ = ρm then we concatenate the subwalk from ρ1 to ε with
ε ↔ φ). This gives us a µ-connecting walk in G2 such that φ is not a non-endpoint node. Finally,
if φ → ε is still on the walk φ, we must have ρ1 = ψ and this edge can be substituted by φ ↔ ε.
The resulting walk is present in G1. Every collider is different from φ and this means that it is in
anG1(C) as well. Therefore, this walk is µ-connecting in G1. It follows that G1 and G2 are Markov
equivalent (regardless of whether H is a tautology). Therefore, H is a tautology if and only if G
are G2 Markov equivalent.

The reduction from 3DNF tautology to Markov equivalence of G and G1 (or of G and G2) is done
in polynomial time in the number of conjunctions and it follows that Decision problems A.1 and
A.2 are coNP-hard. Given a triple (A,B,C), one can decide µ-separation in polynomial time. If
two graphs are not Markov equivalent, then there exists a triple (A,B,C) such that µ-separation
holds in one and not in the other. This is a polynomially-sized certificate, and this means that
these problems are in coNP, thus, coNP-complete.
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Figure 5: A subgraph of G in the proof of Theorem 3.2.

Theorem 3.2 shows that deciding Markov equivalence is not computationally feasible for large
graphs which hurts the practical applicability of µ-separation DMGs. We discuss the implications
further in Subsection 3.2. We now consider the analogous decision problems in a sparse setting.

3.1 Sparse DMGs

We may ask if the hardness results still apply if we fix the maximal connectivity of each node and let
the size of the node set grow. As a formalization of this, we first define a notion of node connectivity
based on inseparability. We say that β is inseparable from α in I(G) if there is no C ⊆ V \ {α}
such that β is µ-separated from α given C in G (Mogensen et al., 2018). We let

→
u(β, I(G)) denote

the set of nodes α such that β is inseparable from α in G, and we let
←
u(β, I(G)) denote the set of

nodes α such that α is inseparable from β.

Definition 3.4 (Node connectivity in DMG). We define con→G(β) as the cardinality of the set
→
u(β, I(G)) and we define con←G(β) as the cardinality of the set

←
u(β, I(G)). We define conG(β) as the

maximum of con→G(β) and con←G(β).

We see that the above definitions are invariant under Markov equivalence, i.e., conG1(β) =
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Figure 6: A subgraph of G in the proof of Theorem 3.2.

conG2(β), con→G1(β) = con→G2(β), and con←G1(β) = con←G2(β) when G1 and G2 are Markov equivalent.
One can define other notions of node connectivity in a DMG, in particular based on the edges
directly, instead of using separability. However, a DMG in which every node is adjacent with
only a small number of nodes may be Markov equivalent with the complete DMG (see Figure 7).
Even in a maximal DMG, the lack of an edge between a pair of nodes does not generally imply
separability (Appendix B), and therefore connectivity based on separability appears to be a more
useful notion of connectivity. Moreover, the graphs are intended as representations of stochastic
systems, thus functional sparsity (i.e., sparsity in the implied dependence structure) seems more
useful than representational sparsity (sparsity in node adjacency). Appendix B provides more
details and examples.

1 2 3 . . . n− 1 n

Figure 7: Loops are omitted from the visualization. This graph is Markov equivalent with the
complete DMG on nodes {1, 2, . . . , n}.

Definition 3.5 (m-sparsity). Let G be a DMG. The maximal connectivity of G is defined as
maxα∈V (conG(α)). We say that G = (V,E) is m-sparse if maxα∈V (conG(α)) ≤ m.

We now state a sparse version of Decision problem 3.1.

Decision problem 3.6 (Markov equivalence in m-sparse DMGs). Let m be a nonnegative integer
and let G1 = (V,E1) and G2 = (V,E2) be m-sparse DMGs. Are G1 and G2 Markov equivalent?

The following are sparse versions of Theorem 3.2 and Corollary 3.3.

Theorem 3.7. Let m ≥ 16, let G = (V,E) be an m-sparse graph, and let e denote an edge. Deciding
Markov equivalence of G and G + e is coNP-complete (Decision problems A.3 and A.4).
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Theorem 3.7 is a stronger version of Theorem 3.2 as it shows that the problem of deciding Markov
equivalence of DMGs remains coNP-complete when restricting to sparse DMGs. We discuss the
implications in Subsection 3.2.

Corollary 3.8. Let m ≥ 16. Deciding Markov equivalence of m-sparse DMGs is coNP-complete.

The value m = 16 may not be what we expect from ‘sparse’ graphical models and two comments
are in order. First, the adjacency sparsity (see Section B) of the graphs in the proof are only 8,
also in the maximal Markov equivalent graphs of the graphs used in the proof. Second, the upshot
of the corollary is that there exists a finite number such that deciding Markov equivalence of m-
sparse DMGs is coNP-complete. This means that fixing the value of m does not generally lead to
computational problems that scale as polynomials in the size of the graph. On the other hand, the
so-called k-weak equivalences that are introduced in this paper provide polynomial-time algorithms
for each fixed k (Section 7). Note that results analogous to those of Theorems 3.2 and 3.7 do not
hold for ADMGs with m-separation. For those, polynomial-time algorithms for Markov equivalence
are known, without making sparsity assumptions (Hu and Evans, 2020).

Proof. We consider a Boolean formula in 3DNF form as in the proof of Theorem 3.2 (see that
proof for related notation and terminology). We will define three m-sparse graphs G = (V,E),
G1 = (V,E1), and G2 = (V,E2) and show that G and G1 are Markov equivalent if and only if H is
a tautology while G1 and G2 are always Markov equivalent.

We define M to be the smallest integer such that 2M−1 ≥ N + 1. We first define a number of
sets that will be subsets of the node set V . Note that these sets are all pairwise disjoint.

Γ = {γij , i = 1, . . . ,M, j = 1 . . . , 2i−1}
Γ̄ = {γ̄ij , i = 1, . . . ,M, j = 1 . . . , 2i−1}
∆ = {δij , i = 1, . . . ,M, j = 1 . . . , 2i−1}
∆̄ = {δ̄ij , i = 1, . . . ,M, j = 1 . . . , 2i−1}
Φ = {φji , j = 1, . . . , N, i = 1, . . . , nj}
Φ̄ = {φ̄ji , j = 1, . . . , N, i = 1, . . . , nj}
X = {χl, l = 1, . . . , n}
Λ = {λl, l = 1, . . . , n}

The node χl corresponds to the Boolean variable xl and the node λl corresponds to the negation
of xl. Nodes φji and φ̄ji both correspond to the literal zji (see also the proof of Theorem 3.2 for
additional explanation). We define

V − = Γ ∪∆ ∪ Φ ∪X ∪ Λ

V̄ − = Γ̄ ∪ ∆̄ ∪ Φ̄

Nε = {νφε , }φ∈V −

Nβ = {νφβ}φ∈V −

N̄ε = {ν̄φε , }φ∈V̄ −

N̄β = {ν̄φβ}φ∈V̄ − .
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Figure 8: A subgraph of G in the proof of Theorem 3.7.

16



We now define the node set V as a disjoint union,

V = {α, β, ε, φ} ∪ V − ∪ V̄ − ∪Nε ∪Nβ ∪ N̄ε ∪ N̄β .

We add some intuition on the construction of the graph. The Γ- and ∆-nodes (and their barred
versions) are ‘triangular’ in shape and help connect a single node to many more in a sparse manner
(see Figure 8). The Φ- and Φ̄-nodes correspond to literals in the conjunctions of the Boolean
formula, H. The elements of X correspond to variables in H, and the elements of Λ to their
negation. The νε- and νβ-components will help connect every node to ε and to β and are copies of
the V − and V̄ − sets in the sense that ρ 7→ νρε is a bijection from V − to Nε, ρ 7→ νρβ is a bijection

from V − to Nβ , ρ 7→ ν̄ρε is a bijection from V̄ − to N̄ε, and ρ 7→ ν̄ρβ is a bijection from V̄ − to N̄β ,
though the edges are not exact copies as explained below.

We now define the edge set of G. We add bidirected edges γij ↔ γ(i+1)(2j), γ(i+1)(2j−1) for

i = 1, . . . ,M − 1, and analogously for Γ̄, ∆, and ∆̄ (see Figure 8). Moreover, we add γMj ↔ φj1;

γ̄Mj ↔ φ̄j1; δMj ↔ δjnj
; δ̄Mj ↔ δ̄jnj

for j ≤ N . We also add γ̄M2M−1 ↔ χ1, λ1; δ̄M2M−1 ↔ χn, λn.

We add α ↔ γ11, γ̄11. We also add ε ↔ δ̄11 and β ↔ δ11. We add ε → β and β → ε as well as
φ↔ ε, β. We add for each j = 1, . . . , N , φji ↔ φji+1 and φ̄ji ↔ φ̄ji+1 for 1 ≤ i ≤ nj − 1.

For φ1, φ2 ∈ V − such that φ1 /∈ Φ or φ2 /∈ Φ, we add νφ1
ε ↔ νφ2

ε and νφ1

β ↔ νφ2

β if and only if

φ1 ↔ φ2 was added above. For each j, we also add ν
γMj

β ↔ ν
φj
i

β ↔ ν
δMj

β and ν̄
γMj
ε ↔ ν̄

φj
i

ε ↔ ν̄
δMj
ε

for each i = 1, . . . , nj . We also add νδ11ε ↔ ε ; νδ11β ↔ β ; ν̄ δ̄11ε ↔ ε and ν̄ δ̄11β ↔ β. Note that

νγ11ε , νγ11β , ν̄ γ̄11ε , ν̄ γ̄11β are not adjacent with α. For φ1, φ2 ∈ V̄ − such that φ1 /∈ Φ̄ or φ2 /∈ Φ̄, we

add ν̄φ1
ε ↔ ν̄φ2

ε and ν̄φ1

β ↔ ν̄φ2

β if and only if φ1 ↔ φ2 was added above. For each j, we also add

ν̄
γ̄Mj

β ↔ ν̄
φj
i

β ↔ ν̄
δ̄Mj

β and ν̄
γ̄Mj
ε ↔ ν̄

φj
i

ε ↔ ν̄
δ̄Mj
ε for each i = 1, . . . , nj .

In this proof, we will say that sets V −, V̄ −, Nε, Nβ , N̄ε, and N̄β are line segments. We define

V i = {γij , νγijε , ν
γij
β , γ̄ij , ν̄

γ̄ij
ε , ν̄

γ̄ij
β , j = 1, . . . , 2i−1}, i = −M, . . . ,−1,

V i = {δij , νδijε , ν
δij
β , δ̄ij , ν̄

δ̄ij
ε , ν̄

δ̄ij
β , j = 1, . . . , 2i−1}, i = 1, . . . ,M,

V 0 = {φji , ν
φj
i

ε , ν
φj
i

β , φ̄ji , ν̄
φ̄j
i

ε , ν̄
φ̄j
i

β , j = 1, . . . , N, i = 1, . . . , nj} ∪

{χi, λi, νχi
ε , ν

λi
ε , ν

χi

β , ν
λi

β },

V −(M+1) = {α}
VM+1 = {β, ε, φ}

and we say that V i is a vertical segment for i = −(M + 1),M, . . . ,−1, 0, 1, . . . ,M,M + 1. ‘Vertical’
refers to the specific visualization of G used in Figure 8. The sets, V ij , defined above are disjoint

and
⋃M+1
i=−(M+1) V

i = V .

We now add a number of directed edges. For every node φ ∈ V −, we add φ, νφε , ν
φ
β → φ, νφε , ν

φ
β .

For every node φ ∈ V̄ −, we add φ, ν̄φε , ν̄
φ
β → φ, ν̄φε , ν̄

φ
β . For each i = ±1, . . . ,±M , we connect

the nodes in the vertical segment V i by a directed cycle (any will work). We add directed cycles
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containing χk and all φji and φ̄ji such that zji is a positive literal of the variable xk. We add directed

cycles containing λk and all φji and φ̄ji such that zji is a negative literal of the variable xk.
Finally, we add all directed and bidirected loops. The above defines the edge set E and we let

G = (V,E). Note that the nodes in a vertical segment are connected by a directed cyclic walk for
i 6= −(M − 1), 0,M + 1. We also define G1 = (V,E1) where E1 = E ∪ {β ↔ ε} and G2 = (V,E2)
where E2 = E ∪ {φ→ ε}. Note that in all three graphs, if ρ1 ∼e ρ2 and ρ1 and ρ2 are in different
vertical segments, V i1 and V i2 , respectively, then e is bidirected and i1 − i2 = ±1.

We will first show that G and G1 are Markov equivalent if and only if H is a tautology. Assume
first that H is a tautology and consider a µ-connecting walk from ρ1 to ρm in G1,

ρ1 ∼ . . . ∼ ρm.

Every node has a self-loop, so it suffices to consider walks where e1 (the edge ε↔ β) only occurs
once. If it does not occur at all the walk is present in G as well and connecting (ancestry is the
same in G and G1). Say

ρ1 ∼ . . . ∼ ε︸ ︷︷ ︸
ω1

↔ β ∼ . . . ∼ ρm︸ ︷︷ ︸
ω2

.

If ρ ∈ V i, then we say that i is the order of ρ.

Lemma 3.9. Let ρ ∈ V be of order j. If there is an open walk from ρ to β given C in G or in G1

then the k’th vertical segment , j < k < M + 1, contains at least one node in C.

Proof. If j = M,M + 1 this is vacuously true as no vertical segment satisfies the condition, and we
can assume that ρ 6= ε, β, φ. Note that this walk must necessarily pass through a collider in each
vertical segment V k such that k > j which gives the result. To see this, note that removing any
vertical segment such that k > j gives us a disconnected graph with ρ in one component and β in
the other as a vertical segment, k, is only adjacent to vertical segments k − 1 and k + 1. When a
walk contains a subwalk ρ1 ∼ ρ2 such that ρ1 is in V k−1 and ρ2 is in V k, then the connecting edge
must be bidirected. If ρ2 is a collider, we must have ρ2 ∈ anG(C) and ρ2 is only an ancestor of
nodes in V k. Otherwise, ρ2 is an ancestor of a collider in V k and the same argument applies.

Lemma 3.10. Let ρ 6= α be a node in G. If there exists an open walk from ρ to β in G1 with a
head at β, then there exists an open walk ρ ∼ νρβ ∼ . . . ∼ β in G with a head at β such that every

nonendpoint node equals νρβ for ρ ∈ V − or ν̄ρβ for ρ ∈ V̄ −.

Proof. If ρ = β, ε, φ, this is immediate. Assume instead that ρ ∈ V − ∪ V̄ −. Choose first the edge
ρ ← νρβ if νρβ ∈ C, and otherwise ρ → νρβ . We concatenate this with the open bidirected path to

β. Such a path exists as ν
γMj

β ↔ ν
δMj

β and ν̄
γ̄Mj

β ↔ ν̄
δ̄Mj

β . This is open since all vertical segments
between ρ and β must contain at least one node which is in C by Lemma 3.9.

If instead ρ ∈ Nε∪N̄ε we can do as above as ρ← νρβ and ρ→ νρβ are in the graph. If ρ ∈ Nβ∪N̄β ,
then there is an open bidirected path with a head at β between ρ and β. If ρ = ε or ρ = β it follows
directly.

We split into cases depending on whether ρ1 = α.
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ρ1 6= α: There is an open walk (given C) from ρ1 with a head at β (Lemma 3.10) that we can
concatenate with ω2 to obtain a connecting walk in G.

If instead

ρ1 ∼ . . . ∼ β ↔ ε ∼ . . . ∼ ρm
the same argument holds.

ρ1 = α: If we have a subwalk between α and β with a noncollider, then we can find a connecting
path in the following way. Say we have

ρ1 ∼ . . . ∼ ψ0 ∼ ψ1 ∼ ψ2 ∼ . . . ε↔ β ∼ . . . ∼ ρm
such that ψ1 is a noncollider (note that, ignoring α→ α, α only has bidirected edges at it, so ψ1 6= α
if we remove α-loops). There is necessarily a tail at ψ1 on one of the adjacent edges, ψ1 /∈ C, and
ψ1 ∈ an(C). We concatenate the subwalk from α to ψ1 with the open walk from ψ1 to β that has
a head at β. Lemma 3.10 gives the existence of this walk. This also holds if ρ1 = ψ0, ψ2 = ε, or
ψ1 = ε.

On the other hand, if the subwalk between α and β has no noncolliders, then either it stays
within a line segment or either α, β, or ε occur on the subwalk as a nonendpoint. We can assume
that α is only an endpoint. If β occurs as a nonendpoint, then this β is a collider and this means
that there is an open subwalk from α to β with a head at β which we can concatenate with ω2.
If ε is a collider (other than right before the final β), then we can remove the cycle from ε to ε
from the walk. In any case, we can find a connecting collider walk in G1 (no noncolliders) such that
α, β, and ε will each occur once. This means that the subwalk only contains nodes from a single
line segment. This segment cannot be Nε, Nβ , N̄ε, nor N̄β as α is not adjacent with any node in
these line segments. If the walk only intersects the V −-line segment, then it must either go through
Φ-nodes or the X ∪ Λ-nodes, not both, as it has no noncolliders (or such a walk can be found).
If it does not visit any χ- or λ-nodes, then there is an open walk in the Γ̄ ∪ Φ̄ ∪ ∆̄-segment (the
analogous walk through the barred versions). Finally, assume it does not visit any Φ-nodes. As H
is a tautology, there is also a conjunction segment in Φ̄ which is open and connecting from α to β
with a head at β. If instead the bidirected walk is in V̄ −, the result follows, and if ε and β occur
in the opposite order on the original µ-connecting walk, we can use similar arguments.

If the formula is not a tautology, let A be an assignment of values such that the formula evaluates
to false. We then consider the set

C− = {χl, νχl
ε , ν

χl

β : xl = 1 in A} ∪ {λl, νλl
ε , ν

λl

β : xl = 0 in A} ∪ Γ ∪∆.

We also define C = an(C−) ∪ {β, δ}. We see immediately that β is not µ-separated from α given
C in G1 as the χ− λ-segment contains an open path from α to ε with a head at ε and furthermore
ε ↔ β is in the graph. On the other hand, consider a potential µ-connecting walk from α to β in
G. If ε is on the walk, it can only return to α. It cannot go between bidirected components because
the directed cycles are either completely contained in C or in its complement. It cannot go through
a φ-component because of the choice of A, and we conclude that it cannot be µ-connecting. In
conclusion, G and G1 are Markov equivalent if and only if H is a tautology.

The arguments in the proof of Theorem 3.2 show that G1 and G2 are Markov equivalent. Argu-
ments similar to those in the proof of Theorem 3.2 furthermore show that Decision problems A.3
and A.4 are coNP-complete.
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Careful examination of the graphs reveals that all three are 16-sparse.

One should note that the graphs in the proof of Theorem 3.7 could also be interpreted as δ-
separation graphs (Didelez, 2008). In this case, the result also holds, i.e., determining δ-separation
Markov equivalence of sparse DMGs is also coNP-complete. To see this one should simply note that
µ-separation Markov equivalence implies δ-separation Markov equivalence and that the conditioning
set used in the proof when H is not a tautology contains β. The hardness result in the δ-separation
case then follows from the (A.1) property of the supplementary material of Mogensen and Hansen
(2020) and from noting that the latent projection technique can also be used for δ-separation.

Richardson (1997) studied DGs under d-separation and gave an example of ‘nonlocality’ in this
setting. The example consisted of a sequence of pairs of graphs, D1

n and D2
n, such that D1

n and D2
n

are not Markov equivalent, but the only separation on which the graphs disagree involves nodes
that are arbitrarily far apart (for increasing values of n). Our setting is quite different, however,
DMGs under µ-separation do exibit the same ‘nonlocality’ as seen from the proof of Theorem 3.7.
Say that H is not a tautology, in which case G and G1 in the proof of Theorem 3.7 are not Markov
equivalent. From the proof, it follows that the graphs only disagree on triples (A,B,C) such that
α ∈ A and β ∈ B, and this means that the proof (for non-tautological H of increasing size) gives
a sequence of pairs of graphs that only disagree on µ-separation of a pair of nodes, α and β, that
are arbitrarily far from each other as measured by the shortest path between α and β. Note that
this also holds in the maximal Markov equivalent graphs of G and G1, and it is therefore not due
to non-maximality.

3.2 Implications of hardness results

The hardness results have several implications that we will outline in this section, in particular, we
argue that several other computational problems are also hard in µ-separation DMGs.

Every Markov equivalence class has a greatest element (Mogensen and Hansen, 2020), and one
can decide if two DMGs are Markov equivalent by computing the greatest Markov equivalent graph
for each of them and compare. This means that finding such a greatest element is also hard.
There are similar implications for oracle learning algorithms. A (local independence) oracle is an
abstract function which a learning algorithm may query and which, when provided with a triple
(A,B,C), outputs whether the corresponding local independence holds or not. The oracle gives the
correct answer, but when using real data, the oracle has to be replaced by hypothesis tests of local
independence, and the purpose of the oracle formalism is simply to separate the algorithmic aspects
from the hypothesis testing. If we assume that there exists a constraint-based learning algorithm
which can recover a unique representative of the Markov equivalence class (say the greatest element,
or some other uniquely defined representative) of the true graph from when given access to a local
independence oracle, then using this algorithm, one can decide Markov equivalence by querying
the µ-separation models of the graphs. This is done by testing µ-separation in the graph and each
test is done in polynomial time (Mogensen, 2020b). If only a polynomial number of queries are
required we could also solve Markov equivalence in polynomial time by comparing the output for
two graphs. Again, this means that such a learning algorithm would need an exponential number
of tests.
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3.2.1 Sparse DMGs

All of the above holds even if we are willing to assume that all graphs are somewhat sparse (m-
sparse, m ≥ 16). This means that a restriction to sparse graphs will not remedy this. This is also
different from DAG-based models in the following sense. In partially observed DAGs, we may learn
a graphical representation of the equivalence class using tests of conditional independence. If we fix
m such that the node degree is less than m, this can be done in polynomial time (Claassen et al.,
2013).

These hardness results motivate the second part of this paper. Instead of requiring sparsity
of the DMGs, we will reinterpret them to obtain a weaker type of equivalence. Essentially, the
DMGs are too expressive leading to the above infeasibility results in connection to their Markov
equivalence classes. We can avoid this by considering a weaker type of equivalence. This leads to
a simple and useful theory and to practical graph learning algorithms as we will see in subsequent
sections.

4 Weak equivalence

In this section, we introduce a notion of weak equivalence and argue that it provides a compu-
tationally feasible notion of equivalence of DMGs. Under a regularity condition, the associated
equivalence classes each have a greatest element and this leads to a simple graphical theory.

4.1 Classes of weak equivalence

We define three types of equivalence in this section and present them in decreasing order of general-
ity. They each limit the set of triples, (A,B,C), that are used to distinguish between independence
models represented by DMGs.

4.1.1 General weak equivalence

If G1 = (V,E1) and G2 = (V,E2) are Markov equivalent, then (A,B,C) ∈ I(G1) if and only if
(A,B,C) ∈ I(G2) for all A,B,C ⊆ V . This means that Markov equivalence requires the indepen-
dence models of G1 and G2 to agree on all triplets in the set P = {(A,B,C) : A,B,C ⊆ V }. A very
general approach to defining weaker notions of equivalence is to only compare the independence
models on a subset of P.

Definition 4.1 (General weak equivalence). Let J ⊆ {(A,B,C) : A,B,C ⊆ V }. We say that
G1 = (V,E1) and G2 = (V,E2) are J -weakly equivalent if

I(G1) ∩ J = I(G2) ∩ J .
We use IJ (G1) to denote the J -weak independence model induced by G1, IJ (G1) = I(G1)∩J . We
use [G1]J to denote the J -weak equivalence class of G1, that is, the set of graphs, G = (V,E), such
that IJ (G) = IJ (G1).

Proposition 4.2. Let J ⊆ P and let V be a finite set. Definition 4.1 defines an equivalence
relation on the set of DMGs with node set V .

Proof. Let G be a DMG. We see that G is J -weakly equivalent with itself such that the relation is
reflexive. The relation is also symmetric and transitive.
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The next statement follows directly from the definition of weak equivalence.

Proposition 4.3. Let J1 ⊆ J2 ⊆ P and let G be a DMG. It holds that IJ1
(G) ⊆ IJ2

(G).

A Markov equivalence class has a greatest element. However, a J -weak equivalence class does
not necessarily have a greatest element as illustrated by the following example.

Example 4.4. We consider the graph, G, in Figure 9 with all loops included as well. We define
the set J ⊆ P,

J =

 ⋃
α,β∈V

(α, β, β)

 ∪{(1, 5, {2, 3, 4, 5})}.
We also define three other graphs from G = (V,E), Gi = (V,Ei), where i = 1, 2, 3, and

E1 = E ∪ {2↔ 3}, E2 = E ∪ {3↔ 4}, E3 = E ∪ {2↔ 3, 3↔ 4}.

Graphs G1 and G2 are both J -weakly equivalent with G which can be seen from simply listing their
J -weak independence models.

We see that (1, 5, {2, 3, 4, 5}) ∈ IJ (G), but (1, 5, {2, 3, 4, 5}) /∈ IJ (G3) which means that G and
G3 are not J -weakly equivalent. We have that G1,G2 ∈ [G]J , and a greatest element of [G]J
must be a supergraph of both G1 and G2, and therefore of G3. If N is a supergraph of G3, then
IJ (N ) ⊆ IJ (G3) ( IJ (G), and we conclude that the J -weak equivalence class of G does not
contain a greatest element.

1 2 3 4 5

Figure 9: The graph G in Example 4.4.

Let J ⊆ P. If two graphs are Markov equivalent, they are of course also equivalent when
restricting to comparisons on the set J . Therefore, every graph is also weakly equivalent with
the unique, maximal graph of its Markov equivalence class. However, the above example shows
that when considering a general J -weak equivalence, an equivalence class need not have a greatest
element as the maximal Markov equivalent graph need not be a greatest element of the larger weak
equivalence class. This leads us to introducing the notion of a homogeneous weak equivalence by
imposing a regularity condition on the set J . The equivalence classes of a homogeneous weak
equivalence relation do indeed contain a greatest element (Section 5).

4.1.2 Homogeneous weak equivalence

We define homogeneous equivalence relation to obtain well-behaved equivalence classes.

Definition 4.5 (Homogeneous equivalence). Consider some weak equivalence induced by J ⊆ P.
We say that this equivalence is homogeneous if there exists a set C, C ⊆ {C : C ⊆ V }, such that
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J = {(A,B,C) ∈ P : A,B ⊆ V,C ∈ C}.

In this case, we will also say that the set J is homogeneous and we will say that C is the collection
of conditioning sets of J .

In other words, a homogeneous equivalence relation is one that restricts only the set of condi-
tioning sets, C. That is, if J is homogeneous, then J -weak equivalence of G1 and G2 means that
for all A,B ⊆ V and C ∈ C we have (A,B,C) ∈ I(G1) if and only if (A,B,C) ∈ I(G2) where C is
some collection of subsets of V . Therefore, the restriction of the independence model imposed by
a homogeneous J only applies to the conditioning sets.

4.1.3 k-weak equivalence

We will now introduce a certain type of homogeneous equivalence which simply restricts the size of
the conditioning sets.

Definition 4.6 (k-weak equivalence). Let 0 ≤ k ≤ n. We say that G1 and G2 are k-weakly
equivalent if for all C such that |C| ≤ k, it holds that (A,B,C) ∈ I(G1) if and only if (A,B,C) ∈
I(G2).

The above is formulated slightly differently than Definitions 4.1 and 4.5, however, k-weak equiv-
alence is a homogeneous weak equivalence relation by using the set C = {C ⊆ V : |C| ≤ k} in
Definition 4.5. On the other hand, not all homogeneous equivalences correspond to a k-weak equiv-
alence. We see that k-weak equivalence only compares graphs using ‘small’ conditioning sets of size
less than k and that Markov equivalence is the same as n-weak equivalence.

For G1 = (V,E1), we use Ik(G1) to denote the k-weak independence model of G1, Ik(G1) =
{(A,B,C) ∈ I(G1), |C| ≤ k}. We let [G]k denote the set of graphs on nodes V that are k-weakly
equivalent with G, and we say that [G]k is the k-weak equivalence class of G. When k = n, we also
use I(G), that is, I(G) = In(G).

4.2 Properties of weak equivalence

This section describes some properties of weak equivalence and weak equivalence classes. Through-
out the section J is a subset of P = {(A,B,C) : A,B,C ⊆ V }. For Markov equivalence, it holds
that G1 ⊆ G2 implies I(G2) ⊆ I(G1) which follows from the definition of µ-separation. This is quite
natural as a larger graph has more edges, therefore fewer independences. The same holds for weak
equivalence classes as shown by the next proposition.

Proposition 4.7. If G1 ⊆ G2, then IJ (G2) ⊆ IJ (G1).

Proof. If (A,B,C) ∈ IJ (G2) then (A,B,C) ∈ I(G2) and (A,B,C) ∈ J , and therefore (A,B,C) ∈
I(G1). This means that (A,B,C) ∈ IJ (G1).

Proposition 4.8 (Well-ordered J -classes). Let J1 ⊆ J2 ⊆ P. If G1 and G2 are J2-weakly equiva-
lent, then they are also J1-weakly equivalent.

Proof. Let (A,B,C) ∈ IJ1
(G1), then (A,B,C) ∈ I(G1) and (A,B,C) ∈ J1. Therefore (A,B,C) ∈

J2 and (A,B,C) ∈ IJ2
(G1) = IJ2

(G2). It follows that (A,B,C) ∈ I(G2) and (A,B,C) ∈ IJ1
(G2).

Interchanging the roles of G1 and G2 and repeating the argument gives the result.
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From the above, we also see that J1 ⊆ J2 implies [G]J2 ⊆ [G]J1 . The next corollary follows
directly from the above proposition.

Corollary 4.9 (Well-ordered k-classes). Let 0 ≤ k1 ≤ k2 ≤ n. If G1 and G2 are k2-weakly
equivalent, then they are also k1-weakly equivalent.

Definition 4.10. We say that J is singleton stable if for all A,B,C ⊆ V , (A,B,C) ∈ J implies
that (α, β, C) ∈ J for all α ∈ A and β ∈ B.

Note that the requirement is only on the A- and B-sets, not the C-set. If J is homogeneous
and (A,B,C) ∈ J , then (Ā, B̄, C) ∈ J for all Ā, B̄ ⊆ V , thus a homogeneous J is also singleton
stable. The following proposition shows, for a singleton stable J , the independence model IJ (G) is
characterized by the independences (A,B,C) whereA andB are singletons andA and C are disjoint.
This proof uses the fact that µ-separation models satisfy so-called left and right composition as well
as left and right decomposition which are asymmetric graphoid properties (Didelez, 2006; Mogensen
et al., 2018). These are similar to classical graphoid properties (Lauritzen, 1996), but left and right
version are needed due to the lack of symmetry.

Proposition 4.11. Let J be singleton stable, let V be a finite set and let S = {(A,B,C) ∈ P :
|A| = |B| = 1, A ∩ C = ∅}. If IJ (G1) ∩ S ⊆ IJ (G2) ∩ S, then IJ (G1) ⊆ IJ (G2).

Without the assumption of singleton stability, this above statement is not true. For instance, if
J ∩ S = ∅, then I(G1)J ∩ S ⊆ I(G2)J ∩ S is trivially true for any pair of graphs.

Proof. Let (A,B,C) ∈ IJ (G1). If A or B is empty, then it follows immediately that (A,B,C) ∈
IJ (G2). Assume that A and B are both nonempty. We can write A = {α1, . . . , αna

} and B =
{β1, . . . , βnb

}. From the definition of µ-separation and using singleton stability of J it follows that
(αi, βj , C) ∈ IJ (G1) for all i = 1, . . . , na and j = 1, . . . , nb. Therefore (αi, βj , C) ∈ IJ (G2) for
all i = 1, . . . , na and j = 1, . . . , nb (if αi ∈ C, then it holds trivially). From the definition of
µ-separation, (A,B,C) ∈ I(G2) and therefore also (A,B,C) ∈ IJ (G2).

Proposition 4.12 (Maximality). The graph G = (V,E) ∈ [G1]J is maximal in [G1]J if and only if
it is complete or if G + e /∈ [G1]J for all edges e such that e /∈ E.

When G = (V,E) ∈ [G1]J is maximal in [G1]J , then we also say that G is J -maximal (the
equivalence class is implicit as a graph can only be maximal in its own equivalence class). A graph
is J -maximal if the addition of any edge will change the J -weak independence model.

Proof. If G is complete, then it is clearly maximal. If G ( G2, then G ( G + e ⊆ G2 for some e /∈ E.
We have IJ (G2) ⊆ IJ (G + e) and IJ (G + e) ( IJ (G) = IJ (G1) and therefore G2 /∈ [G1]J .

On the other hand, assume that G is maximal, and that G is not complete. It follows from the
definition of maximality that G + e /∈ [G]J for all e /∈ E.

If G1 ⊆ G2 then I(G2) ⊆ I(G1) (Proposition 4.7). One may ask if I(G2) ⊆ I(G1) implies G1 ⊆ G2.
The next example shows that this is not the case, also not for maximal graphs.

Example 4.13. We consider two graphs, G1 and G2 as shown in Figure 10 (both graphs also have
all directed and bidirected loops). Let S = {(A,B,C) : |A| = |B| = 1, A ∩ C = ∅}. Then I(G1) ∩ S
equals
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{(
2, 3, 1

)
,
(

2, 3, {1, 3}
)
,
(

3, 2, 1
)
,
(

3, 2, {1, 2}
)
,
(

3, 1, 1
)
,
(

3, 1, {1, 2}
)}

.

I(G2) ∩ S equals {(
2, 3, {1, 3}

)
,
(

3, 1, 1
)}

and therefore it is a subset of I(G1) ∩ S. Markov equivalence corresponds to J -weak equivalence
with J = P, and by Proposition 4.11, I(G2) ⊆ I(G1). Both graphs are maximal which means that
2 → 1 cannot be added to G2 Markov equivalently. This illustrates that I(G2) ⊆ I(G1) does not
imply G1 ⊆ G2, not even if G2 is maximal.

1 2 3 1 2 3

Figure 10: Graphs G1 (left) and G2 (right) in Example 4.13. Loops are omitted from the visualiza-
tion.

Proposition 4.14. Let J1 ⊆ J2. If G is J1-maximal, then it is also J2-maximal.

Proof. If G is complete, then it is also J2-maximal. Assume instead that G = (V,E) is not complete
and e /∈ E. G is J1-maximal, so G + e /∈ [G]J1

(Proposition 4.12). Using Proposition 4.7, there
exist a triple (A,B,C) such that (A,B,C) ∈ IJ1

(G) and (A,B,C) /∈ IJ1
(G + e) and therefore

(A,B,C) /∈ I(G + e). We see that (A,B,C) ∈ IJ2
(G) and (A,B,C) /∈ IJ2

(G + e). It follows that
G is J2-maximal (Proposition 4.12).

We say that a graph, G, is k-maximal if is J -maximal for J = {(A,B,C) ∈ P : |C| ≤ k} which
means that J induces a k-weak equivalence relation.

Corollary 4.15. Let 0 ≤ k1 ≤ k2 ≤ n. If G is k1-maximal, then it is also k2-maximal.

In particular, if a graph is k-maximal for some k ≤ n, then it is also the unique maximal element
in its Markov equivalence class.

Proposition 4.16 (Minimality). The graph G = (V,E) ∈ [G1]J is minimal in [G1]J if and only if
it is empty or if G − e /∈ [G1]J for all edges such that e ∈ E.

Proof. If it is empty, then it is clearly also minimal. Otherwise, let G2 ( G. We have IJ (G) (
IJ (G − e) ⊆ IJ (G2) for e ∈ E (Proposition 4.7). Therefore, G2 /∈ [G]J .

If G is minimal in [G1]J , then it is either the empty graph, or for all e ∈ E, G − e /∈ [G1]J by
definition of minimality.

Proposition 4.17. Let J1 ⊆ J2. If G is J1-minimal, then it is also J2-minimal.

The proposition states that the property of being minimal is preserved when considering a
larger set of independences. An equivalence class is finite and nonempty, hence, it always contains
a maximal element and a minimal element. We will show later that it also contains a greatest
element. However, a least element need not exist and Example 6.2 provides an example of this.
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Proof. If G = (V,E) is empty, then it is also J2-minimal. Assume instead that e ∈ E. There exists
a triple (A,B,C) such that (A,B,C) ∈ IJ1(G − e) and (A,B,C) /∈ IJ1(G). Then (A,B,C) ∈ J1

and therefore (A,B,C) ∈ J2. It follows that (A,B,C) ∈ IJ2
(G − e) and (A,B,C) /∈ IJ2

(G). As
this holds for all e ∈ E, we see that G is J2-minimal (Proposition 4.16).

4.2.1 Marginalization

We say that a class of graphs, G, is closed under marginalization if for every G = (V,E) ∈ G and
every O ⊆ V there exists M = (O,EO) ∈ G such that for every A,B,C ⊆ O,

(A,B,C) ∈ I?(G)⇔ (A,B,C) ∈ I?(M) (1)

where I?(G) is the independence model induced by G. When G is the class of DMGs, I?(·) could for
instance be a J -weak independence model. Appendix C shows that DMGs with weak equivalence
are closed under marginalization. This follows directly from the analogous result in the case of
Markov equivalence (Mogensen and Hansen, 2020) using a so-called latent projection (see also
Verma and Pearl, 1990a; Richardson et al., 2017).

4.3 k-weak equivalence

In this subsection, we restrict our attention to k-weak equivalence relations. The following result
shows that if |V | = n, then n-weak and (n− 1)-weak equivalence is the same. By convention, β is
always µ-separated from α given C when α ∈ C. If |C| = n, then C = V , and leads to a trivial
separation.

Proposition 4.18. Let G1 = (V,E1) and G2 = (V,E2) such that |V | = n. Graphs G1 and G2 are
(n− 1)-weakly equivalent if and only if they are n-weakly equivalent.

Proof. If G1 and G2 are n-weakly equivalent, then they are also (n− 1)-weakly equivalent.
On the other hand, assume that G1 and G2 are (n − 1)-weakly equivalent, and let (α, β, C) ∈

In(G1) such that α, β ∈ V , C ⊆ V , and α /∈ C. We must then have |C| ≤ n − 1, and therefore
(α, β, C) ∈ In(G2) by (n − 1)-weak equivalence of G1 and G2. By Proposition 4.11, this implies
In(G1) ⊆ In(G2). Changing the roles of G1 and G2 completes the argument.

1 2

3 4

GA

1 2

3 4

GB

1 2

3 4

GC

1 2

3 4

GD

Figure 11: Graphs from Example 4.19. All bidirected loops are present in the graphs but omitted
from the visualization.

Example 4.19 (Weak equivalence class). In this example, we restrict our attention to graphs
with all loops included in which case graphs GA, GB, and GC in Figure 4.19 constitute a 2-weak
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equivalence class and a 3-weak equivalence class. Graph GC is the greatest element in both cases.
We have that [GC]2 ⊆ [GC]1 (Corollary 4.9) and [GC]1 = {GA,GB,GC,GD}. We see that GC and GD
are not 2-weakly equivalent as 2 is µ-separated from 3 given {2, 4} in GD while this is not the case
in GC.

Example 4.20. We give an example of how ‘strong connectivity’, that is, many similar paths,
may lead to more edges in a k-weak graph than in the corresponding n-weak graph, k ≤ n. For
this purpose, we consider graphs G1 and G2 as shown in Figure 12. The graph G2 is 2-maximal
and therefore it is k-maximal for all k ≥ 2, including k = n (Corollary 4.15). We construct a
smaller graph, G1, by removing 1 → 2. The smaller graph is not Markov equivalent, but it is
(n− 3)-equivalent.

In terms of interpretation, we see that in this class of graphs there are many directed paths from
α to β and if there are more than k, then the edge α→ β can be added k-weakly equivalently. In a
graphical sense, nodes α and β are ‘strongly’ connected as there are more than k disjoint, directed
paths from α to β and they cannot all be blocked by conditioning on at most k nodes.

1

2 3 . . . n− 1

n 1

2 3 . . . n− 1

n

Figure 12: Graphs G1 (left) and G2 (right) from Example 4.20. All loops are present in the graphs,
but not shown above.

We now define treks and directed treks (see also Foygel et al., 2012; Mogensen, 2020a). Foygel
et al. (2012); Mogensen (2020a) used paths in their definitions of treks, however, we use walks such
that treks between α and α are also allowed.

Definition 4.21 (Trek, directed trek). Let ω be a nontrivial walk between α and β,

α ∼ . . . ∼e β.

We say that ω is a trek if it has no colliders. We say that a trek is directed from α to β if ∼e has
a head at β.

We let dtrG(β) ⊆ V denote the set of nodes, α, such that there exists a directed trek from α to
β in G.

Definition 4.22. Let G1 and G2 be DMGs. We say that G1 and G2 are trek equivalent if for all
β ∈ V , it holds that

dtrG1(β) = dtrG2(β).
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1 2

Figure 13: The above graph is trek equiva-
lent with the complete graph, and therefore
also 0-weakly equivalent with the complete
graph (Corollary 4.23).

1 2 3

4. . .n

Figure 14: Directed cycle, see Proposition
4.24.

A walk is µ-connecting from α to β given ∅ if and only if it is a directed trek from α to β which
is reflected in the next corollary.

Corollary 4.23. Graphs G1 and G2 are 0-weakly equivalent if and only if they are trek equivalent.

Proof. This follows from Corollary E.3.

In Corollary 4.23, it is important to define treks using walks, not paths. For instance, the graph
in Figure 13 is 0-weak equivalent with the complete graph, but the only directed treks from 1 to 2
is not are paths. Therefore, the result in Corollary 4.23 does not hold if directed treks are required
to be paths. We say that a DMG G = (V,E), V = {1, 2, . . . , n}, contains a directed cycle if there
is some permutation of V , σ, such that σ(1)→ σ(2)→ . . .→ σ(n− 1)→ σ(n)→ σ(1) in G (see an
example in Figure 14).

Proposition 4.24. Let G = (V,E) be a DMG, V = {1, 2, . . . , n}, which contains a directed cycle.
If every node has a loop, then the complete DMG on V is the greatest element of both [G]0 and [G]1.

Proof. For k = 0, this follows from Corollary 4.23 as there is a directed trek between any ordered
pair of nodes in G. Let k = 1 and consider nodes α and β. We show that there is no separating
set, C, such that C ≤ 1. If C = ∅, this is clear. If C = {γ}, γ 6= α, then either α ∗→ . . . → β is
open, or γ 6= β and α← . . .← β ∗→ β is open.

5 Greatest elements under homogeneous weak equivalences

In the rest of the paper, we assume every weak equivalence relation to be homogeneous (Definition
4.5) as this leads to the existence of a greatest element in each equivalence class which we will prove
in Subsection 5.2. Mogensen and Hansen (2020) showed the analogous result in the case of Markov
equivalence classes. The notions of C-potential siblings and C-potential parents are central to this
proof and are introduced in the next subsection.
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5.1 C-potential siblings and C-potential parents

The existence of a greatest element in each J -weak equivalence class can be proven using C-potential
siblings and C-potential parents as introduced in Definitions 5.1 and 5.2. We say that two graphs,
G1 = (V,E1) and G2 = (V,E2), are C-equivalent, C ⊆ V , if for all γ, δ ∈ V ,

(γ, δ, C) ∈ I(G1)⇔ (γ, δ, C) ∈ I(G2).

Let α, β ∈ V and let e be the edge α↔ β. The conditions (cs1)-(cs3) in Definition 5.1 are sufficient
and necessary for G and G + e to be C-equivalent. When e is directed, the conditions (cp1)-(cp4)
in Definition 5.2 are analogously necessary and sufficient for G and G + e to be C-equivalent. The
sufficiency is proven in Lemmas D.2 and D.3 and the necessity follows from applying Propositions
5.5 and 5.6 to G + e.

Definitions 5.1 and 5.2 use an abstract independence model, I, while Propositions 5.3 and 5.4
describe the content of those definitions in the case of a graphical independence model, I = I(G).

Definition 5.1 (C-potential sibling). Let I be an independence model over V , let α, β ∈ V , and
let C ⊆ V . We say that α and β are C-potential siblings in I if (cs1)-(cs3) hold.

(cs1) if α /∈ C: (α, β, C) /∈ I, and

if β /∈ C: (β, α,C) /∈ I

(cs2) if β ∈ C: for all γ ∈ V ,
(γ, α, C) ∈ I ⇒ (γ, β, C) ∈ I

(cs3) if α ∈ C: for all γ ∈ V ,
(γ, β, C) ∈ I ⇒ (γ, α, C) ∈ I

Definition 5.2 (C-potential parent). Let I be an independence model over V , let α, β ∈ V , and
let C ⊆ V . We say that α is a C-potential parent of β in I if (cp1)-(cp4) hold.

(cp1) if α /∈ C: (α, β, C) /∈ I

(cp2) if α /∈ C: for all γ ∈ V ,
(γ, β, C) ∈ I ⇒ (γ, α, C) ∈ I

(cp3) if α /∈ C, β ∈ C: for all γ, δ ∈ C,

(γ, δ, C) ∈ I ⇒ (γ, β, C) ∈ I ∨ (α, δ, C) ∈ I

(cp4) if α, β /∈ C: for all γ ∈ V ,
(β, γ, C) ∈ I ⇒ (α, γ, C) ∈ I

If I is graphical, I = I(G), and α and β are C-potential siblings in I(G), we will say that
α ↔ β is a C-potential sibling edge between α and β. Similarly, we will say that α → β is a
C-potential parent edge from α to β if α is a C-potential parent of β in I(G). The following two
propositions simply rewrite Definitions 5.1 and 5.2 to explicitly use µ-connecting walks in the case
of a graphical independence model. Their proofs follow directly from the definitions of µ-separation
and the independence model IJ (G).
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Proposition 5.3 (Graphical version of C-potential siblings). Let IJ (G) be the weak independence
model induced by G = (V,E). Let C ⊆ V and let C be the collection of conditioning sets of J .
Nodes α and β are C-potential siblings if and only if C /∈ C or (gcs1)-(gcs3) holds.

(gcs1) If α /∈ C, there exists a µ-connecting walk from α to β given C, and

if β /∈ C, there exists a µ-connecting walk from β to α given C.

(gcs2) If β ∈ C, then for all γ ∈ V such that there exists a µ-connecting walk from γ to β given C,
there also exists a µ-connecting walk from γ to α given C.

(gcs3) If α ∈ C, then for all γ ∈ V such that there exists a µ-connecting walk from γ to α given C,
there also exists a µ-connecting walk from γ to β given C.

Proposition 5.4 (Graphical version of C-potential parents). Let IJ (G) be the weak independence
model induced by G = (V,E). Let C ⊆ V and let C be the collection of conditioning sets of J . The
node α is a C-potential parent of β if and only if C /∈ C or (gcp1)-(gcp4) holds.

(gcp1) If α /∈ C, there exists a µ-connecting walk from α to β given C.

(gcp2) If α /∈ C, then for all γ ∈ V such that there exists a µ-connecting walk from γ to α given C,
there also exists a µ-connecting walk from γ to β given C.

(gcp3) If α /∈ C and β ∈ C, then for all γ, δ ∈ V such that there exists a µ-connecting walk from γ
to β given C and a µ-connecting walk from α to δ given C, there also exists a µ-connecting
walk from γ to δ given C.

(gcp4) If α, β /∈ C then for all γ ∈ V such that there exists a µ-connecting walk from α to γ given
C, there also exists a µ-connecting walk from β to γ given C.

The next two propositions show that if α ↔ β (α → β) is in a graph, then α and β are C-
potential siblings (α is a C-potential parent of β) in the independence model of the graph for all
C ⊆ V . The edge e is therefore a C-potential sibling edge (C-potential parent edge) in I(G + e),
and if G and G + e are C-equivalent, then e is also a C-potential sibling edge (C-potential parent
edge) in I(G). This means that I(G) satisfying the conditions in Definitions 5.1 and 5.2 is necessary
for C-equivalence of G and G + e.

Proposition 5.5. Let J be homogeneous. If α↔ β is in G, then α and β are C-potential siblings
in IJ (G) for all C ⊆ V .

Proof. If C /∈ C, then it follows immediately. We assume C ∈ C and prove (gcs1)-(gcs3). (gcs1)
If α /∈ C, then α ↔ β is a µ-connecting walk in G given C. The proof of the other statement is
analogous. (gcs2) Assume that β ∈ C and let γ ∈ V such that there exists a µ-connecting walk
from γ to β given C. Composing this with β ↔ α gives a µ-connecting walk from γ to α given C
as β ∈ C. (gcs3) This is shown similarly to (gcs2).

Proposition 5.6. Let J be homogeneous. If α→ β is in G, then α is a C-potential parent of β in
IJ (G) for all C ⊆ V .
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Proof. If C /∈ C, then this again follows immediately. We instead assume C ∈ C and prove (gcp1)-
(gcp4). (gcp1) If α /∈ C, then α → β is a µ-connecting walk given C. (gcp2) Assume that α /∈ C
and let γ ∈ V , and assume there is a µ-connecting walk from γ to α given C. Concatenating this
with the edge α → β gives a µ-connecting walk from γ to β given C as α /∈ C. (gcp3) Assume
that α /∈ C, β ∈ C and let γ, δ ∈ V such that there exist a µ-connecting walk from γ to β given C
and a µ-connecting walk from α to δ given C. Concatenating them with the edge α → β gives a
µ-connecting walk from γ to δ given C as β ∈ C and α /∈ C. (gcp4) Assume α, β /∈ C and let γ ∈ V
such that there exists a µ-connecting walk from α to γ given C. Concatenating the edge α → β
with this walk gives a µ-connecting walk from β to γ given C as α, β /∈ C.

5.2 Existence of greatest elements

Markov equivalence classes of DMGs are known to contain a greatest element (Mogensen and
Hansen, 2020). This means that for an equivalence class [G], there exists a graph Ḡ ∈ [G] such that
Ḡ is a supergraph of all graphs G̃ ∈ [G]. This is a very convenient result as it allows a succinct
representation of the entire Markov equivalence class as illustrated in Example 2.13. The main
result of this section, Theorem 5.8, shows that J -weak equivalence classes enjoy the same property
when J is homogeneous. This means that we can represent weak equivalence classes in a similar
way. Section 6 discusses this further and introduces a hierarchy of k-weak equivalence classes for
different values of k.

Lemma 5.7. Let G1 be a DMG. Let J be homogeneous and let C be the collection of conditioning
sets of J . If α and β are C-potential siblings for all C ∈ C and e denotes the edge α ↔ β, then
IJ (G) = IJ (G + e). If α is a C-potential parent of β for all C ∈ C and e denotes the edge α→ β,
then IJ (G) = IJ (G + e).

Proof. The inclusion IJ (G+ e) ⊆ IJ (G) follows from Proposition 4.7. We show the other inclusion
by contraposition. Proposition 4.11 implies that it is enough to consider triples of the form (γ, δ,D),
γ, δ ∈ V , D ⊆ V , γ /∈ D. Assume (γ, δ,D) /∈ IJ (G + e). If (γ, δ,D) /∈ J , then (γ, δ,D) /∈ IJ (G). If
instead (γ, δ,D) ∈ J , then (γ, δ,D) /∈ I(G + e) and D ∈ C. In this case, there exist a µ-connecting
walk from γ to δ given D in G + e. Nodes α and β are C-potential siblings (or α is a C-potential
parent of β) for all C ∈ C, and therefore also for D ∈ C. Lemma D.2 (Lemma D.3) gives the
result.

Lemmas D.2 and D.3 that are used in the above proof are adaptations of lemmas in Mogensen
and Hansen (2020). Appendix D describes how to make this generalization.

From an independence model IJ (G) such that J is homogeneous we now define a graph on
nodes V , G = (V,E). As J is homogeneous, we know that J = {(A,B,C) ∈ P : C ∈ C} for some
C ⊆ {C : C ⊆ V }. For all α, β ∈ V , we include the directed edge α → β if and only if α is a
C-potential parent of β for all C ∈ C. We include the bidirected edge α ↔ β if and only if α and
β are C-potential siblings for all C ∈ C. We denote the resulting graph by N . We see that N
is uniquely defined from the J -independence model of G, IJ (G), and is therefore the same for all
elements of the equivalence class [G]J . The following shows that N is a unique maximal element,
that is, a greatest element, in [G]J .

Theorem 5.8. Let G be a DMG and let J be homogeneous. The graph N defined above is J -weakly
equivalent with G and it is the unique maximal element in [G]J .
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Proof. Let Ḡ ∈ [G]J . If a directed edge, α → β, is in Ḡ, then α is a C-potential parent of β in
IJ (Ḡ) = IJ (G) for all C (Proposition 5.6). This means that the directed edge is in N . Similarly,
for bidirected edges (Proposition 5.5), and N is a supergraph of all graphs in [G]J .

Every edge in N is a C-potential edge in [G]J for all C ∈ C. We can construct a finite sequence
of graphs starting from G and adding the edges that are in N , but not in G, sequentially. Lemma
5.7 shows that all graphs in this sequence are J -weakly equivalent with G, and therefore so is N .

In conclusion, N is a greatest element of the equivalence class.

Theorem 5.8 is central in our development of graphical modeling based on weak equivalence as
it provides a unique and interpretable representative of each equivalence class. We give examples
of applications of this theorem in Section 6.

5.2.1 Comparison with Markov equivalence case

The above definitions and results are related to results in the case of Markov equivalence (Mogensen
and Hansen, 2020). Definitions 5.1 and 5.2 can be thought of as C-specific versions of Definitions
5.1 and 5.5 in Mogensen and Hansen (2020). This leads to C-specific versions of Propositions 5.5
and 5.6 that are analogous to propositions in Mogensen and Hansen (2020).

Importantly, the potential parent conditions of Mogensen and Hansen (2020) use multiple con-
ditioning sets and are therefore not amenable as a foundation for the proof of Theorem 5.8. The
conditions in this paper use a single C which facilitates the generalization from Markov equivalence
classes to weak equivalence classes. The reformulation of the definitions also entails an important
change of perspective. Instead of describing conditions such that the addition of an edge does not
change the independence model for any conditioning set (Markov equivalence), the above condi-
tions describe conditions such that the addition of an edge does not change the independence model
when restricted to a specific conditioning set. This allows us to aggregate these conditions for any
set of conditioning sets as defined by a homogeneous J , and from this we can prove the existence
of a greatest element in this more general setting.

6 Representation of weak equivalence classes

The previous section proved the existence of a greatest element in each weak equivalence class
when J is homogeneous. In Subsection 6.1, we first desribe how this leads to a simple and concise
representation of an entire equivalence class, and Subsection 6.3 illustrates this representation using
the alarm example. In Subsection 6.2, we restrict our attention to k-weak equivalence and describe
a hierarchy of k-weak equivalence classes. Choosing a k = 0, 1, . . . , n−1 leads to different notions of
equivalence with different levels of granularity. The hierarchy in Subsection 6.2 provides a graphical
representation of k-weak equivalence classes across different values of k which is meant to illuminate
how equivalence classes change across different values of k.

6.1 Directed mixed equivalence graph

The following definition provides a graphical object representing an entire weak equivalence class.
Mogensen and Hansen (2020) gave the same definition in the context of Markov equivalence as
illustrated in Example 2.13.
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Definition 6.1 (Directed mixed equivalence graph (DMEG)). Let J be homogeneous and assume
that N = (V, F ) is J -maximal and N ∈ [G]J . We define F̄ ⊆ F such that e ∈ F̄ if and only if
e ∈ F and there exists G = (V,E) ∈ [G]J such that e /∈ E. We define the directed mixed weak
equivalence graph (DMEG) of [G]J as the triple (V, F, F̄ ).

We visualize a directed mixed weak equivalence graph by drawing the corresponding maximal
graph and making all edges in F̄ dashed (see the example in Figure 15). A DMEG summarizes the
equivalence class in the following sense. Let N be a J -maximal element such that N ∈ [G]J , that
is, N is the greatest element of [G]J , and let N ′ be the corresponding DMEG. If an edge is solid in
N ′, then this edge is in every G1 ∈ [G]J . If an edge is absent in N ′, then no G1 ∈ [G]J contains this
edge. If an edge, e, is dashed in N ′, then there exists a G1 = (V,E) ∈ [G]J such that e /∈ E. Clearly
e is in N ∈ [G]J and therefore e is in some elements of [G]J , but not in others. One should note
that removing multiple dashed edges from N ′ does not necessarily lead to a J -weakly equivalent
graph as removing an edge may impose restrictions on which other edges can be removed while
maintaining J -weak equivalence. This is related to the fact that a weak equivalence class need not
contain a least element (see Figure 15).

1 2

3 4

GA

1 2

3 4

GB

1 2

3 4

GC

1 2

3 4

DMEG

Figure 15: Graphs from Example 6.2. Loops are omitted from the visualization.

Example 6.2 (Directed mixed equivalence graph). Graphs GA, GB, and GC in Figure 15 constitute
a 2-weak and a 3-weak equivalence class when restricting to DMGs that have all loops present (for
simplicity we make this assumption). The graph GC is the greatest element. The corresponding
DMEG is also shown in Figure 15, see Definition 6.1. The 3-weak equivalence class (2-weak equiv-
alence class) does not contain a least element as removing both 4 → 3 and 2 → 3 does not lead to
a 3-weakly equivalent graph (2-weakly equivalent graph).

Example 6.3. This example describes a setting which leads to a weak equivalence with a homoge-
neous J which is not a k-weak equivalence. We consider a setting where a 5-dimensional process
is observed, V = {1, 2, 3, 4, 5}, but not every coordinate process is observed simultaneously. This is
essentially a setting with overlapping variable sets, see, e.g., Danks (2002); Danks et al. (2008);
Triantafillou et al. (2010); Huang et al. (2020). We assume that data contains observations of XR

t

over an interval TR for R ∈ R,

{
{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {3, 4, 5}

}
.

The intervals are disjoint, TR1
∩TR2

= ∅ for R1 6= R2. We will approach this problem by restricting
the local independences that can be tested using this data and require that there exists R ∈ R such
that A,B,C ⊆ R for us to be able to test the local independence (A,B,C).
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We see that all local independences, (α, β, C), such that α, β ∈ V and |C| ≤ 1 can be tested from
this data as every triple, {α, β, γ}, α, β, γ ∈ V , is observed simultaneously (that is, α, β, γ ∈ R for
some R ∈ R). We can also test (α, β, {1, 2}) for all α, β ∈ {1, 2, 3, 4, 5}, but not (4, 5, {1, 3}). This
means that we can model this using k-weak equivalence, but only for k = 0 or k = 1. We can obtain
further information by defining

J =
{

(α, β, C) : α, β ∈ V, |C| ≤ 1
} ⋃ {

(α, β, C) : α, β ∈ V,C = {1, 2}
}
.

This leads to a homogeneous weak equivalence relation which is not a k-weak equivalence.

6.2 Hierarchy of k-weak equivalence

The previous section describes a graph, the directed mixed equivalence graph, which can help us
understand a single weak equivalence class for a fixed, homogeneous J . In this section, we restrict
our attention to k-weak equivalence relations and study a description of k-weak equivalence classes
for varying values of k. We consider a fixed node set, V . For each value of k, the k-weak equivalence
classes form a partition of the DMGs on node set V , with smaller k corresponding to more coarse
partitions. Each weak equivalence class can be represented by its maximal element and there is an
interpretable structure between k-weak equivalence classes for different values of k which can help
us understand the connection between these different notions of equivalence. This section describes
this hierarchy of k-weak equivalences.

6.2.1 Levels of granularity

Let G be a DMG, and let k1 < k2. Let N1 denote the greatest element of [G]k1 and let N2 denote the
greatest element of [G]k2 . We know that [G]k2 ⊆ [G]k1 and it follows that N2 ⊆ N1. The graphs N1

and N2 are both representatives of G, but at different levels of granularity. The k2-equivalence class
of G is smaller, thus k2-weak equivalence is more expressive than k1-weak equivalence. We may ask
what ‘approximation error’ we make by using k1-weak equivalence instead of k2-weak equivalence.
Let e be an edge in N1 which is not in N2. We know that G and G + e are k1-weakly equivalent, so
they can only differ on µ-separations with C such that |C| > k1. The approximation error induced
by including e is therefore restricted to ‘large’ conditioning sets. From a practical point of view,
local independence tests with large conditioning sets are expected to perform poorly. This means
that the loss of information when testing local independences from finite samples may be small.

6.2.2 Forest representation

We can provide a convenient representation of the k-weak equivalence hierarchy using trees and
forests. A tree, T = (VT , ET ), is an undirected graph in which each pair of distinct nodes are
connected by exactly one path. A forest is the disjoint union of a set of trees. We can construct a
forest in the following way. For a fixed V , |V | = n, and k ∈ K = {0, 1, . . . , n− 1}, we consider the
set of k-weak equivalence classes of DMGs on node set V . We let nk denote the number of such
equivalence classes. The i’th k-weak equivalence class, i = 1, . . . , nk, contains a unique maximal
element and we denote this graph by Gk,i. We do this for every k ∈ {0, 1, . . . , n − 1} and define a
node set
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Vg =
⋃
k∈K

{(Gk,i, k) : i = 1, 2, . . . , nk}.

Note that we write this as a disjoint union as the same graph may be a maximal element for
different k. Therefore, the set Vg contains pairs (G, k) such that G is k-maximal. For instance, if
G is a maximal element of a k1-weak equivalence class and of a k2-weak equivalence class, then
(G, k1) ∈ Vg and (G, k2) ∈ Vg and these are different nodes.

We now construct a forest with node set Vg in the following way. For each (G, k) such that
k > 0, there exist a unique (k − 1)-maximal graph, Ḡ, such that G ∈ [Ḡ]k−1, and we join (G, k) to
(Ḡ, k − 1) by an undirected edge. We call the resulting graph the weak equivalence hierarchy over
V and denote it by HV . For k < n − 1, we will use up(G, k)) to denote the (nonempty) set of
graphs Ḡ such that (G, k) and (Ḡ, k̄) are adjacent in HV and such that k̄ = k + 1. For k > 0, we
will use down(G, k) to denote the unique graph Ḡ such that (G, k) and (Ḡ, k̄) are adjacent in HV
and such that k̄ = k − 1. Example 6.4 and Figure 16 describe (parts of) the weak hierarchy over
V = {1, 2, 3, 4}.

Properties of HV We first argue that HV is a forest. The nodes (G0,i, 0), i = 1, . . . , n0, must
be in different connected components as for each node there is at most a single edge down in the
hierarchy. Using induction on k and Corollary 4.9, we see that if Gk,i ∈ [G0,j ]0, then there is a path
between (Gk,i, k) and (G0,j , 0), and Vj = {(Gk,i, k) : Gk,i ∈ [G0,j ]0} is therefore a connected subset
of Vg. It contains exactly |Vj | − 1 edges and is thus a tree. This means that HV consists of n0

disjoint trees, each tree rooted at G0,j for some j = 1, 2, . . . , n0. Corollary 4.23 characterizes 0-weak
equivalence.

When i1 6= i2, [G]k1,i1 and [G]k2,i2 are disjoint when k1 = k2, but need not be when k1 6= k2. For
k2 ≥ k1 and i1 = 1, . . . , nk1 , there exist i2 such that Gk1,i1 = Gk2,i2 which is due to the fact that if
a graph is k1-maximal, then it is also k2-maximal (Corollary 4.15). The leaves of the trees are the
greatest elements of the Markov equivalence classes (Proposition 4.18).

The graphHV represents the entire system of k-weak equivalence classes and can be conveniently
drawn in levels such that the vertical placement is determined by k (see Figure 16). Let [Gk,i]k
be a k-weak equivalence class represented by its greatest element Gk,i. If we move along the
unique edge towards a (k − 1)-maximal graph, we obtain the maximal element of the (k − 1)-weak
equivalence class containing graph the Gk,i by definition of HV . If we move to the (k + 1)-level,
one of the (k + 1)-equivalence classes will be represented by Gk,i itself. Naturally, moving towards
larger k in the hierarchy achieves smaller equivalence classes as if G is (k − 1)-maximal, then
[G]k−1 =

⋃
Ḡ∈up(G,k−1)[Ḡ]k.

Dashed edges in the hierarchy In HV , one may use DMEGs instead of the corresponding
maximal DMGs, and in this paragraph we think of a node (G, k) in HV as a pair consisting of a
DMEG and an integer. In this case, there is also a certain structure in the dashed/solid status
of edges across levels of k. If an edge α ∼ β is solid in (G, k), then it is also solid in all graphs
Ḡ ∈ up(G, k). This is seen from the fact that if G̃ ∈ [Ḡ]k+1 then G̃ ∈ [G]k and every graph in this
equivalence class contains α ∼ β which is why all graphs in [Ḡ]k+1 also contain it. If the edge α ∼ β
is dashed in (G, k), then it is also dashed in Ḡ = down(G, k − 1). This is because there exists a
graph G̃ ∈ [G]k without this edge, and G̃ ∈ [Ḡ]k−1. On the other hand, the edge is in the maximal
element of [G]k, thus the edge must be present in Ḡ and dashed.
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On the other hand, moving up (towards larger values of k) in the hierarchy a dashed edge may
be removed, become solid, or remain dashed. Moving down (towards smaller values of k) in the
hierarchy a solid edge may become dashed.

Example 6.4 (k-weak hierarchy over V = {1, 2, 3, 4}). Figure 16 shows a subgraph of HV for
V = {1, 2, 3, 4}. A node in HV , (G, k), is shown as G (or rather, the corresponding DMEG), and
k determines the vertical placement of the node. All loops are present in the maximal graphs, but
omitted from the visualization for simplicity. We use the edge α ◆−◆ β to indicate that all three
possible edges between a pair of nodes, α and β, are present in the graph, that is, α → β, α ↔
β, α↔ β. The letters (x, y), to the right of a graph index the graphs shown in the figure.

Figure 16 shows two subtrees of trees in the hierarchy. We see that the two graphs shown on
level k = 0, (a, a) and (e, a), are not 0-weak equivalent as there is no directed trek from 1 to 2 in
(e, a) (see also Corollary 4.23).

In the figure, a red undirected edge indicates graph equality, for example, the edge between (a, c)
and (a, d). As noted above, if G is k-maximal, then G ∈ up(G, k) and when G is drawn both in levels
k and k + 1, we indicate this by making the undirected edge connecting them red.

6.3 Alarm network

We return to the alarm example from Subsection 2.1. This is a network of moderate size with 10
observable coordinate processes. If we consider graphical modeling of this network using a k-weak
equivalence relation, different values of k ∈ {0, 1, . . . , 10} lead to different levels of granularity as
larger values of k will give us smaller equivalence classes. Let G denote the latent projection of
the system (see Figure 1), and let Nk denote the greatest element of [G]k. Figure 17 shows the
DMEGs of N10 and of N3. We know that N10 ⊆ N3. In this example, we see that the only
difference between the two DMEGs in Figure 17 is the bidirected edge between 3 and 10. This edge
is necessarily dashed as N10 ∈ [G]3 = [N3]3. The added complexity of using k = 10 does therefore
not provide much additional information in this example.

7 Algorithms for weak equivalence

The results in Section 3 imply that several computational tasks that occur naturally when using
µ-separation and local independence for graphical modeling of stochastic processes are not feasible,
even for a moderate number of coordinate processes. Section 4 introduces a more flexible notion of
equivalence to circumvent these issues and Section 5 shows that the convenient theory of Markov
equivalence classes translates seamlessly to the more general notion of weak equivalence. As a last
component of this paper, we argue that this more general theory leads to algorithms that are in
fact feasible from a computational point of view.

7.1 A parametrized hierarchy of graphical equivalence

We start this subsection by providing a formal definition of the weak equivalence decision problem.

Decision problem 7.1 (Weak Markov equivalence in DMGs). Let G1 = (V,E)1 and G2 = (V,E2)
be DMGs. Are G1 and G2 J -weakly equivalent?
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Figure 16: Subtrees from the k-weak equivalence hierarchy on V = {1, 2, 3, 4}. For simplicity, we
use α ◆−◆ β to indicate that α → β;α ← β;α ↔ β are all present in the graph. We use α ◆−◆ β
regardless of whether some or all of these underlying edges are dashed. In this figure, bidirected
edges are red for better legibility.
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1 2 3 4

5 6 8

10 11 12

1 2 3 4

5 6 8

10 11 12
DMEG of N3

Figure 17: Graphs from Subsection 6.3. Loops are omitted from the visualization. Left: directed
mixed equivalence graph of N10 which is the greatest element of [G]k for k = 4, 5, . . . , 10. Right:
directed mixed equivalence graph of N3 which is the greatest element of [G]k for k = 2, 3. The only
difference between the two DMEGs is the dashed, bidirected edge betweeen 2 and 3. In N3, we see
that 5 → 10 ↔ 3 is a µ-connecting walk from 5 to 3 given {2, 6, 10, 11}. In N10, there is no such
connecting walk, and this illustrates that N10 and N3 are not 4-weakly equivalent.

Decision problem 7.1 is coNP-complete as it is a more general problem than Decision problem
3.1. We restrict this to k-weak equivalence and obtain a parametrized decision problem.

Decision problem 7.2 (Weak Markov equivalence in DMGs). Let k be a nonnegative integer, and
let G1 = (V,E)1 and G2 = (V,E2) be DMGs. Are G1 and G2 k-weakly equivalent?

A decision problem is said to be slicewise polynomial if there exists an algorithm which solves
the problem in O(ng(k)) steps for a computable function g, input length n, and parameter k. For
fixed k, we can decide k-weak equivalence of two DMGs by simply checking every possible triple
(α, β, C), α, β ∈ V,C ⊆ V . This can be done in time bounded by ng(k) as the number of conditioning
sets is bounded by nk. This shows that parametrized k-weak equivalence is a slicewise polynomial
problem, in that for a fixed k it is solvable by an algorithm which is polynomial in n. One should
note that this is different from the m-sparse decision problems (e.g, Decision problem 3.6) as they
remain hard for a fixed m whenever m ≥ 16.

Intuitively, the unrestricted Markov equivalence problem is computationally hard as the maximal
size of the conditioning sets also grows with n. On the other hand, if we consider k-weak equivalence
for a fixed k then the maximal size of the conditioning sets is fixed, and the problem can be solved
in time which scales polynomially in n.

7.2 Computing greatest elements and directed mixed equivalence graphs

As explained above, for a fixed k one can decide k-weak equivalence in polynomial time. The same
applies to the related computational problems.

Assume we have a graph G and want to find the maximal element of [G]k. A simple algorithm
checks for each edge if its addition violates any of the independences in [G]k and adds the edge if
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and only if this is not the case. For a fixed k, this is done in polynomial time.
When considering a weak equivalence class as represented by its greatest element, we are in-

terested in computing the associated directed mixed equivalence graph (DMEG) as this graph
represents the entire equivalence class concisely. We may remove a single edge at a time and decide
Markov equivalence to obtain the corresponding DMEG from a greatest element.

8 Learning

There is a large literature on methods for recovering a graph from observational data Spirtes and
Zhang (2018). In the case of DAG-based models, many methods use tests of conditional indepen-
dence. Similarly, it is possible to learn local independence graphs using tests of local independence.
In this section, we briefly discuss graphical structure learning based on tests of local independence
as described by Meek (2014) and its connection to weak equivalence of DMGs. Mogensen et al.
(2018) described a learning algorithm outputting the Markov equivalence DMEG from tests of local
independence. Absar and Zhang (2021) implemented a PC-like algorithm based on µ-separation.
Bhattacharjya et al. (2022) studied independence tests in proximal graphical event models and
graphical structure learning based on tests of local independences. Other work described tests of
local independence (Thams and Hansen (2021) and Christgau et al. (2022)) and good tests are of
course a prerequisite for constraint-based structure learning. The learning problem has also been
studied in the discrete-time processes (Eichler, 2013).

As argued in previous sections, constrained-based algorithms that learn the Markov equivalence
class of a partially observed local independence graph and are correct in the oracle setting scale
poorly with the size of the graph. Therefore, k-weak equivalence classes may constitute more
reasonable targets for graphical structure learning. The oracle learning algorithm in Mogensen
et al. (2018) leveraged the potential sibling and potential parent criteria to ensure correctness,
though the number of these conditions also scales poorly with graph size, n. This naturally leads
to the idea of using C-potential sibling and C-potential parent criteria directly for learning. In the
oracle case this leads to a straightforward learning algorithm by starting from the complete DMG.
For each pair of nodes, (α, β), one may test the C-potential parent criteria for all |C| ≤ k. If one
of these criteria is violated, one simply removes α → β, and similarly for the bidirected edges.
For fixed k, this leads to a polynomial-time oracle learning algorithm which outputs the maximal
k-weakly equivalent graph of the true graph. This is similar to early stopping in FCI (Spirtes,
2001) as it only uses tests with small conditioning sets C. While smaller values of k lead to less
informative output (larger equivalence classes), the interpretation of a learned DMEG remains the
same as when using k = n as shown by the theory in previous sections.

Outside of the oracle setting, actual tests of local independence output a p-value. When learn-
ing local independence graphs, one may compute p-values from the local independence tests that
comprise the C-potential parent/sibling criteria, |C|, and use these p-values to output a maximal
graph which is in minimum violation with the data, see e.g. Hyttinen et al. (2014) for a similar
idea in DAG-based graphical structure learning.

9 Discussion

The results in Section 3 show that deciding Markov equivalence is computationally hard, even
under a sparsity constraint. This also implies that finding the unique maximal element of a Markov
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equivalence class is hard and that constraint-based learning algorithms that are correct in oracle
versions need exponentially many tests in the worst case.

The theory developed in this paper provides a new interpretation of µ-separation in directed
mixed graphs as representations of local independence in partially observed stochastic processes.
This leads to equivalence relations on directed mixed graphs that are weaker than Markov equiv-
alence. Under a weak equivalence relation, each equivalence class of directed mixed graphs have
a simple representation and interpretation using the existence of a greatest element. Importantly,
they retain a clear interpretation and a convenient graphical representation of an entire k-weak
equivalence class is available, just as in the case of Markov equivalence classes. The greatest ele-
ment of an equivalence class also provides a feasible learning target, and one can give a constructive
characterization of this element (the collection of C-potential sibling and C-potential parent con-
ditions). The Markov equivalence class is often the learning target when trying to recover a graph
from observational data, however, the complexity results in this paper imply that this target may
be too expressive. The previous sections give the theoretical underpinning for feasible learning
algorithms that output graphs that are less expressive than the Markov equivalence class.

A subset of the weak equivalence relations, k-weak equivalence relations, are naturally para-
metrized by a natural number k. Varying k, one obtains more or less granular graphical modeling,
and a simple hierarchy of equivalence classes can be described across k. The parameter k specifies
both the granularity of the equivalence class and the complexity of, e.g., finding a maximal graph.
The work in this paper mostly focused on the k-weak equivalence, however, the central results
hold more general weak equivalences, and one may find applications of other types of equivalence
relations, e.g., with inspiration from specific applications.
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A Decision problems

We list the formal decision problems used in Section 3.

Decision problem A.1 (Add-1 bidirected Markov equivalence in DMGs). Let G1 = (V,E1) and
G2 = (V,E2) be DMGs such that E2 = E1 ∪ {e} and e is bidirected edge. Are G1 and G2 Markov
equivalent?
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Decision problem A.2 (Add-1 directed Markov equivalence in DMGs). Let G1 = (V,E1) and
G2 = (V,E2) be DMGs such that E2 = E1 ∪ {e} and e is directed edge. Are G1 and G2 Markov
equivalent?

The next decision problems are sparse versions of Decision problems A.1 and A.2.

Decision problem A.3 (Add-1 birected Markov equivalence in sparse DMGs). Let m be a non-
negative integer and let G1 = (V,E1) and G2 = (V,E2) be m-sparse DMGs such that E2 = E1 ∪ {e}
and e is bidirected edge. Are G1 and G2 Markov equivalent?

Decision problem A.4 (Add-1 directed Markov equivalence in sparse DMGs). Let m be a non-
negative integer and let G1 = (V,E1) and G2 = (V,E2) be m-sparse DMGs such that E2 = E1 ∪ {e}
and e is directed edge. Are G1 and G2 Markov equivalent?

B Node connectivity in DMGs

In this section, we elaborate on the discussion in Subsection 3.1 on different notions of node con-
nectivity in a DMG. For a DMG, G = (V,E) and a node β ∈ V , we define β’s indegree, inG(β), to
be number of nodes, α ∈ V , such that α ∗→ β. Similarly, we define β’s outdegree, outG(β), as the
number of nodes, α ∈ V , such that β ∗→ α. This is an adaptation of the common definitions of in-
and outdegree in DAGs. If α ∗→ β in G, then α ∈ u(β, I(G)), and it follows that the indegree of β
is less than or equal to con→G1(β). Similarly, the outdegree of β is less than or equal to con←G1(β). It
holds that

∑
β∈V con→G1(β) =

∑
β∈V con←G1(β). However, as illustrated in Figure 18 it is possible for

con→G1(β) for some β to be large while con←G1(α) is small for all α ∈ V .

1

2

3

. . .

n 1

2

3

. . .

n

Figure 18: Graphs G1
n and G2

n. In G1
n (left), con←G1

n
(1) = 5 while con→G1

n
(α) ≤ 2 for all nodes α.

Similarly, in G2
n above (right) con→G2

n
(1) = 5 while con←G2

n
(α) ≤ 2 for all nodes α. Therefore, we use

a maximum over both measures of node connectivity in Section 3.1.

The indegree and outdegree of a node β need not equal the con→G1(β) and con←G1(β), respectively
(see the example in Figure 19). Moreover, the indegree and outdegree need not be the same for
Markov equivalent graphs (Figure 19).

The example in Figure 7 is exploiting non-maximality of the graph. In each Markov equivalence
class, [G], there is a greatest element, N and one could define sparsity of the nodes in G by counting
adjacencies in the N which is invariant under Markov equivalence. However, the in- and outdegree
of β in N may still be strictly less than con→G1(β) and con←G1(β), respectively (Figure 19). In fact,
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one can find a family of graphs, {Gn = (Vn, En)}, and a node β ∈ Vn for all n such that con→G1(β)
is unbounded while the indegree and outdegree are fixed (see the example in Figure 21).

If α is inseparable into β and β is inseparable into α in a maximal DMG, they need not be
adjacent (see the example in Figure 20).

1 2 3 4 5

Figure 19: The graph above, G = (V,E), is Markov equivalent with the graph obtained by adding
the edge 5 → 3, N = (V, F ) where F = E ∪ {5 → 3}. This shows that in- and outdegrees can be
different for two Markov equivalent graphs. The graph N is the greatest element of G’s Markov
equivalence class. We see that 4 cannot be separated from 2 by any subset of {1, 3, 4, 5}, and
therefore inN (4) < con→G1(4) and outN (2) < con←G1(2), even though N is maximal.

1 2

3

4

5 6

Figure 20: The graph above, G = (V,E), is maximal, however there is no set C ⊂ {1, 3, 4, 5, 6}
such that 5 is µ-separated from 2 by C, and there is also no set C ⊂ {1, 2, 3, 4, 6} such that 2 is
µ-separated from 5 by C.
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Figure 21: We consider a sequence of graphs, Gn, n ≥ 3, as illustrated above. The graph Gn has
2n+ 1 nodes, and Gn is maximal for each n. For every n, the indegree of 1 in the graph Gn is three.
On the other hand, con→Gn(1) equals n+ 2, thus is unbounded in this family of graphs.

C Marginalization

This section argues that the representation of weak equivalence is closed under marginalization in
the sense that we can marginalize any graph, G, onto a smaller node set, O, which represents the
same independence model as the original graph when restricting independence statements to triples
(A,B,C) such that A,B,C ⊆ O. This is formalized in Equation 1. A so-called latent projection of
G satisfies this requirement. The latent projection was also used in Mogensen and Hansen (2020),
and earlier in Verma and Pearl (1990a); Richardson et al. (2017).

Definition C.1 (Latent projection). We denote the latent projection on G on O by m(G, O).

The latent projection of a graph on a node set represents a marginalized version of the indepen-
dence model, as formalized by the following corollary. Mogensen and Hansen (2020) proved this
result in the case of J = P, that is, in the case of Markov equivalence (Mogensen and Hansen,
2020, Theorem 3.12). The general case follows directly from the Markov equivalence result.

Corollary C.2. Let G(V,E), O ⊆ V , and let M = m(G, O). For A,B,C ⊆ O, it holds that

(A,B,C) ∈ IJ (G)⇔ (A,B,C) ∈ IJ (M).

Proof. Theorem 3.12 of Mogensen and Hansen (2020) shows that

(A,B,C) ∈ I(G)⇔ (A,B,C) ∈ I(M),

and the result follows immediately.
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Mogensen and Hansen (2020) stated an algorithm to output the latent projection of a DMG
(Algorithm 1). This was similar to earlier algorithms in of other classes of graphs Koster (1999);
Sadeghi (2013). The following proposition was proved by Mogensen and Hansen (2020).

Proposition C.3 (Mogensen and Hansen (2020)). Let G = (V,E) be a DMG and O ⊆ V . Algo-
rithm 1 outputs its latent projection, m(G, O).

One should note that the marginalization of a (weakly) maximal graph need not be (weakly)
maximal as illustrated in Figure 22.

1 2 3

4

1 2 3

4

Figure 22: Graphs G1 (left) and G2 (right) illustrating that marginalizations of (weakly) maximal
graphs need not be (weakly) maximal. G2 is the marginalization of G1 over O = {1, 2, 3}. G1 is
2-maximal, and therefore maximal for all k ≥ 2. G2 is a marginalization, but is not k-maximal for
any k, 0 ≤ k ≤ 3. Loops are omitted from the visualization.

input : G = (V,E) and M ⊆ V
output: M = (O, Ē)
Initialize E0 = E, M0 = (V,E0), k = 0;
while ΩM (Mk) 6= ∅ do

Choose θ = θ(α,m, β) ∈ ΩM (Mk);
Set ek+1 to be the edge between α and β which is endpoint-identical to θ;
Set Ek+1 = Ek ∪ {ek+1};
Set Mk+1 = (V,Ek+1);
Update k = k + 1

end
return (Mk)O

Algorithm 1: Computing the latent projection of a DMG (Mogensen and Hansen, 2020). We
consider a DMG, G = (V,E), and M ⊆ V over which we will marginalize. We let O = V \M .
A triroute is a walk α ∼ γβ such that γ 6= α, β. This is similar to a tripath in Lauritzen and
Sadeghi (2018), but we allow α = β. We say that a triroute is noncolliding if γ is not a collider
on the triroute. We say that heads and tails are (edge) marks. We say that two walks between α

and β, (α, eα1 . . . , e
β
1 , β) and (α, eα2 . . . , e

β
2 , β), are endpoint-identical if eα1 and eα2 have the same

mark at α and eβ1 and eβ2 have the same mark at β (note that this may depend on the orientation
of directed edges on the walk). We say that a walk between α and β, ω, is endpoint-identical
with an edge e between α and β if ω is endpoint-identical with the walk (α, e, β). The set
ΩM (G) is the set of noncolliding triroutes, α ∼ m ∼ β, such that m ∈ M and such that an
endpoint-identical edge α ∼ β is not in G. We let (G)O denote the induced subgraph on node
set O, that is, (G)O = (O,EO) where EO is the subset of E consisting of all edges, e, such that
when e is between α and β then both of these edges are in O.
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D Proofs and lemmas

The proofs of the following lemmas are adaptations of the proofs of Lemmas 5.4 and 5.8 in Mogensen
and Hansen (2020). We include them for completeness to show how the appropriate changes are
made. Lemmas 5.4 and 5.8 in Mogensen and Hansen (2020) did not use the C-specific conditions
that are essential in obtaining the stronger results that we present in this paper.

Definition D.1 (Route). We say that a walk, ω = (γ1, e1, γ2, . . . , el, γl+1), is a route if the node
γl+1 occurs at most twice on ω and no other node occurs more than once on ω.

Routes characterize µ-connections in DMGs (Mogensen and Hansen, 2020), and we use them in
the next proofs. Note that the below lemmas are formulated using I(G), not the restricted version
IJ (G).

Lemma D.2. Let C ⊆ V and let e be a C-potential sibling edge between α and β in I(G). Let
γ, δ ∈ V . If there is a µ-connecting walk from γ to δ given C in G + e, then there is a µ-connecting
walk from γ to δ given C in G.

Proof. Consider any µ-connecting walk from γ to δ given C in G+e. We can also find a µ-connecting
route from γ to δ given C in G + e (Mogensen and Hansen, 2020), and we denote this route by ρ.
If α /∈ C, then there exists a µ-connecting walk from α to β given C in G using (cs1) of Definition
5.1. If β /∈ C, then there exists a µ-connecting walk from β to α given C in G, also using (cs1). We
denote these walks by ν1 and ν2, respectively, if they exist.

If e does not occur on ρ, then ρ is µ-connecting given C in G. If e occurs twice, then either
ρ contains a subroute α ↔ β ↔ α and δ = α or ρ contains a subroute β ↔ α ↔ β and δ = β.
Assume first the former. There is either a µ-connecting subroute from γ to α, or α /∈ C. If β ∈ C,
then consider the subroute between γ and α. This subroute is either trivial or has a tail at α. In
either case, composing it with ν1 gives a µ-connecting walk from γ to β given C in G, and using
(cs2) there is also a µ-connecting walk from γ to α given C in G. If β /∈ C, then we can compose
the subroute from γ to α with ν1 and ν2. The resulting walk will be µ-connecting as β ∈ an(C)\C.
The argument is the same when β ↔ α↔ β and δ = β.

We now assume that e occurs only once on ρ and assume first that

γ ∼ . . . ∼ α︸ ︷︷ ︸
ρ1

↔ β ∼ . . . ∗→ δ︸ ︷︷ ︸
ρ2

.

If α /∈ C, then we can compose ρ1, ν1, and ρ2 to obtain a µ-connecting walk given C. Note that
this also holds if ρ1 is trivial. If α ∈ C, then ρ1 is not trivial and it has a head at α. Using (cs3),
there exists a µ-connecting walk from γ to β and composing it with ρ2 gives the result. If instead

γ ∼ . . . ∼ β ↔ α ∼ . . . ∗→ δ,

the same arguments work, now using (cs2).

Lemma D.3. Let C ⊆ V and let e be a C-potential parent edge from α to β in I(G). Let γ, δ ∈ V .
If there is a µ-connecting walk from γ to δ given C in G+ e, then there is a µ-connecting walk from
γ to δ given C in G.
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Proof. We consider a µ-connecting walk from γ to δ given C in G+e. If α /∈ C, then by (cp1) there
exists a µ-connecting walk from α to β given C, and we denote this walk by ν when it exists. We
can find a µ-connecting route from γ to δ given C in G + e, and we denote this route by ρ.

In this proof, we will say that a collider on a walk is newly closed if the collider is in anG+e(C),
but not in anG(C). If there exists a newly closed collider, then α /∈ C and β ∈ anG(C). We assume
first that e occurs at most once on ρ. If there are newly closed colliders on ρ, the proof of Lemma
5.8 in Mogensen and Hansen (2020) shows that we can find a µ-connecting walk in G + e with no
newly closed colliders such that e occurs at most once, and we denote this walk by ω̃.

If ω̃ does not contain e, then the result follows. If it does contain e, we split into two cases.
Assume first that

γ ∼ . . . ∼ α︸ ︷︷ ︸
ρ1

→ β ∼ . . . ∗→ δ︸ ︷︷ ︸
ρ2

.

We see that α /∈ C. If ρ1 is trivial or if it has a tail at α, then composing ρ1, ν, and ρ2 gives a
µ-connecting walk. If ρ1 has a head at α, then (cp2) gives a µ-connecting walk from γ to β that
we can compose with ρ2. Assume instead that

γ ∼ . . . ∼ β︸ ︷︷ ︸
ρ1

← α ∼ . . . ∗→ δ︸ ︷︷ ︸
ρ2

.

If ρ1 has a head at β and β ∈ C, then (cp3) gives the result. If β /∈ C, we can find a walk in
G + e with no newly closed colliders and only one occurrence of e of the type

γ ∼ . . .← β︸ ︷︷ ︸
ρ1

← α ∼ . . . ∗→ δ︸ ︷︷ ︸
ρ2

.

where ρ1 can be trivial, using the same argument as in the proof of Lemma 5.8 in Mogensen and
Hansen (2020). We have α, β /∈ C and there is a µ-connecting walk from α to δ. Using (cp4) there
is also one from β to δ. Composing this with ρ1 gives the result since ρ1 is either trivial or has a
tail at β.

Finally, if e occurs twice on ρ, we must have α /∈ C. We can use the same arguments as in the
proof of Lemma 5.8 in Mogensen and Hansen (2020) using the walk ν and condition (cp2).

E Additional results

When we count the number of colliders on a walk, we count them with multiplicity, that is, if

(γ1, e1, γ2, e2, . . . , el−1, γl, el, γl+1)

is a walk, ω, then the number of colliders on this walk equals the number of i, 2 ≤ i ≤ l, such that
el−1 and ei both have heads at γi on ω. Note that the endpoints, γ1 and γl+1 are not colliders by
definition. The next lemma is useful for giving a characterization of k-weak equivalence in terms of
µ-connecting walks.
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Lemma E.1. If there is a µ-connecting walk from α to β given C in G, then there is a µ-connecting
walk from α to β given C in G with at most |C| colliders, all of which are in C.

Proof. Let γ1, γ2, . . . , γl denote the colliders on the µ-connecting walk. We know that γi ∈ an(C)
and therefore there exist a directed path γi → δ1 → . . . → δli such that δli ∈ C and such that
δli ∈ C is the only node in C on this directed path. If γi ∈ C, then the path is trivial, that is,
contains no edges and just a single node, γi. Adding γi → δ1 → . . . → δli ← . . . ← δ1 ← γi for
each i creates a walk which is µ-connecting from α to β given C such that every collider is in C.
If a node occurs as a collider more than once, we can remove the loop. The resulting walk is also
µ-connecting, also if β is a collider, and it has strictly fewer colliders. We can repeat this to find a
µ-connecting walk with at most |C| colliders.

Proposition E.2. Let G be a DMG. Let α, β ∈ V and C ⊆ V such that |C| ≤ k. We have
(α, β, C) ∈ Ik(G) if and only if there is no µ-connecting walk from α to β given C in G with at
most k colliders.

Proof. If there is a µ-connecting walk given C, then clearly (α, β, C) /∈ Ik(G). On the other hand,
if (α, β, C) /∈ Ik(G) then there is a µ-connecting walk from α to β given C and Lemma E.1 gives
the result.

This means that the restriction of the independence models to k-weak equivalence ignores µ-
connecting walks with more than k colliders.

Corollary E.3. Graphs G1 and G2 are k-weak equivalent if and only if it holds for all α, β ∈ V
and C ⊆ V such that |C| ≤ k that there is a µ-connecting walk from α to β given C in G1 with at
most k colliders if and only if there is a µ-connecting walk from α to β given C in G2 with at most
k colliders.

Proof. Assume first that G1 ∈ [G2]k, and that ω is a µ-connecting walk from α to β given C,
|C| ≤ C, in G1 with at most k colliders. Proposition E.2 gives that (α, β, C) /∈ Ik(G1) and therefore
(α, β, C) /∈ Ik(G2). Using Proposition E.2 again gives the result.

Assume instead that for all α, β, C such that |C| ≤ k it holds that there is a µ-connecting
walk from α to β given C with at most k colliders in G1 if and only if there is one in G2. If
(α, β, C) ∈ Ik(G1), α /∈ C, then there is no µ-connecting walk from α to β given C in G1 and
therefore also no µ-connecting walk with at most k colliders in G2, and Propositions 4.11 and E.2
give the result.
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